Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=5,f(2)=1 and 
f(n)=3f(n-1)+f(n-2) then find the value of 
f(4).
Answer:

If f(1)=5,f(2)=1 f(1)=5, f(2)=1 and f(n)=3f(n1)+f(n2) f(n)=3 f(n-1)+f(n-2) then find the value of f(4) f(4) .\newlineAnswer:

Full solution

Q. If f(1)=5,f(2)=1 f(1)=5, f(2)=1 and f(n)=3f(n1)+f(n2) f(n)=3 f(n-1)+f(n-2) then find the value of f(4) f(4) .\newlineAnswer:
  1. Identify Given Information: Identify the given information and the recursive formula.\newlineWe are given a recursive function f(n)=3f(n1)+f(n2)f(n) = 3f(n-1) + f(n-2), with initial conditions f(1)=5f(1) = 5 and f(2)=1f(2) = 1. We need to find the value of f(4)f(4).
  2. Calculate f(3)f(3): Use the recursive formula to find f(3)f(3). We know f(1)f(1) and f(2)f(2), so we can calculate f(3)f(3) using the formula f(n)=3f(n1)+f(n2)f(n) = 3f(n-1) + f(n-2). f(3)=3f(2)+f(1)f(3) = 3f(2) + f(1) f(3)=3(1)+5f(3) = 3(1) + 5 f(3)=3+5f(3) = 3 + 5 f(3)=8f(3) = 8
  3. Calculate f(4)f(4): Use the recursive formula to find f(4)f(4). Now that we have f(3)f(3) and f(2)f(2), we can calculate f(4)f(4) using the formula f(n)=3f(n1)+f(n2)f(n) = 3f(n-1) + f(n-2). f(4)=3f(3)+f(2)f(4) = 3f(3) + f(2) f(4)=3(8)+1f(4) = 3(8) + 1 f(4)=24+1f(4) = 24 + 1 f(4)=25f(4) = 25

More problems from Write and solve direct variation equations