Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=5,f(2)=0 and 
f(n)=3f(n-1)-f(n-2) then find the value of 
f(6).
Answer:

If f(1)=5,f(2)=0 f(1)=5, f(2)=0 and f(n)=3f(n1)f(n2) f(n)=3 f(n-1)-f(n-2) then find the value of f(6) f(6) .\newlineAnswer:

Full solution

Q. If f(1)=5,f(2)=0 f(1)=5, f(2)=0 and f(n)=3f(n1)f(n2) f(n)=3 f(n-1)-f(n-2) then find the value of f(6) f(6) .\newlineAnswer:
  1. Find f(3)f(3): Use the given recursive formula to find f(3)f(3). The recursive formula is f(n)=3f(n1)f(n2)f(n) = 3f(n-1) - f(n-2). We know f(1)=5f(1) = 5 and f(2)=0f(2) = 0. Calculate f(3)f(3) using the formula. f(3)=3f(2)f(1)=3×05=5f(3) = 3f(2) - f(1) = 3\times 0 - 5 = -5.
  2. Find f(4)f(4): Use the recursive formula to find f(4)f(4). We now know f(2)=0f(2) = 0 and f(3)=5f(3) = -5. Calculate f(4)f(4) using the formula. f(4)=3f(3)f(2)=3(5)0=15f(4) = 3f(3) - f(2) = 3*(-5) - 0 = -15.
  3. Find f(5)f(5): Use the recursive formula to find f(5)f(5). We now know f(3)=5f(3) = -5 and f(4)=15f(4) = -15. Calculate f(5)f(5) using the formula. f(5)=3f(4)f(3)=3(15)(5)=45+5=40f(5) = 3f(4) - f(3) = 3*(-15) - (-5) = -45 + 5 = -40.
  4. Find f(6)f(6): Use the recursive formula to find f(6)f(6). We now know f(4)=15f(4) = -15 and f(5)=40f(5) = -40. Calculate f(6)f(6) using the formula. f(6)=3f(5)f(4)=3(40)(15)=120+15=105f(6) = 3f(5) - f(4) = 3*(-40) - (-15) = -120 + 15 = -105.

More problems from Write and solve direct variation equations