Q. If f(1)=5,f(2)=0 and f(n)=3f(n−1)−f(n−2) then find the value of f(6).Answer:
Find f(3): Use the given recursive formula to find f(3). The recursive formula is f(n)=3f(n−1)−f(n−2). We know f(1)=5 and f(2)=0. Calculate f(3) using the formula. f(3)=3f(2)−f(1)=3×0−5=−5.
Find f(4): Use the recursive formula to find f(4). We now know f(2)=0 and f(3)=−5. Calculate f(4) using the formula. f(4)=3f(3)−f(2)=3∗(−5)−0=−15.
Find f(5): Use the recursive formula to find f(5). We now know f(3)=−5 and f(4)=−15. Calculate f(5) using the formula. f(5)=3f(4)−f(3)=3∗(−15)−(−5)=−45+5=−40.
Find f(6): Use the recursive formula to find f(6). We now know f(4)=−15 and f(5)=−40. Calculate f(6) using the formula. f(6)=3f(5)−f(4)=3∗(−40)−(−15)=−120+15=−105.
More problems from Write and solve direct variation equations