Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=4,f(2)=5 and 
f(n)=2f(n-1)+2f(n-2) then find the value of 
f(5).
Answer:

If f(1)=4,f(2)=5 f(1)=4, f(2)=5 and f(n)=2f(n1)+2f(n2) f(n)=2 f(n-1)+2 f(n-2) then find the value of f(5) f(5) .\newlineAnswer:

Full solution

Q. If f(1)=4,f(2)=5 f(1)=4, f(2)=5 and f(n)=2f(n1)+2f(n2) f(n)=2 f(n-1)+2 f(n-2) then find the value of f(5) f(5) .\newlineAnswer:
  1. Find f(3)f(3): Use the given initial conditions to find f(3)f(3). The recursive formula is f(n)=2f(n1)+2f(n2)f(n) = 2f(n-1) + 2f(n-2). We know f(1)=4f(1) = 4 and f(2)=5f(2) = 5. Calculate f(3)f(3) using the formula. f(3)=2f(2)+2f(1)=2×5+2×4=10+8=18f(3) = 2f(2) + 2f(1) = 2\times 5 + 2\times 4 = 10 + 8 = 18.
  2. Calculate f(4)f(4): Use the recursive formula to find f(4)f(4). We now have f(2)=5f(2) = 5 and f(3)=18f(3) = 18. Calculate f(4)f(4) using the formula. f(4)=2f(3)+2f(2)=2×18+2×5=36+10=46f(4) = 2f(3) + 2f(2) = 2\times18 + 2\times5 = 36 + 10 = 46.
  3. Determine f(5)f(5): Use the recursive formula to find f(5)f(5). We now have f(3)=18f(3) = 18 and f(4)=46f(4) = 46. Calculate f(5)f(5) using the formula. f(5)=2f(4)+2f(3)=2×46+2×18=92+36=128f(5) = 2f(4) + 2f(3) = 2\times46 + 2\times18 = 92 + 36 = 128.

More problems from Write and solve direct variation equations