Q. If f(1)=4,f(2)=1 and f(n)=f(n−1)−f(n−2) then find the value of f(5).Answer:
Find f(3): Use the given initial conditions to find f(3). The recursive formula is f(n)=f(n−1)−f(n−2). We know f(1)=4 and f(2)=1. Calculate f(3) using the formula. f(3)=f(2)−f(1)=1−4=−3
Calculate f(4): Use the recursive formula to find f(4). We now have f(2)=1 and f(3)=−3. Calculate f(4) using the formula. f(4)=f(3)−f(2)=−3−1=−4
Determine f(5): Use the recursive formula to find f(5). We now have f(3)=−3 and f(4)=−4. Calculate f(5) using the formula. f(5)=f(4)−f(3)=−4−(−3)=−4+3=−1
More problems from Write and solve direct variation equations