Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=4,f(2)=1 and 
f(n)=f(n-1)-f(n-2) then find the value of 
f(5).
Answer:

If f(1)=4,f(2)=1 f(1)=4, f(2)=1 and f(n)=f(n1)f(n2) f(n)=f(n-1)-f(n-2) then find the value of f(5) f(5) .\newlineAnswer:

Full solution

Q. If f(1)=4,f(2)=1 f(1)=4, f(2)=1 and f(n)=f(n1)f(n2) f(n)=f(n-1)-f(n-2) then find the value of f(5) f(5) .\newlineAnswer:
  1. Find f(3)f(3): Use the given initial conditions to find f(3)f(3). The recursive formula is f(n)=f(n1)f(n2)f(n) = f(n-1) - f(n-2). We know f(1)=4f(1) = 4 and f(2)=1f(2) = 1. Calculate f(3)f(3) using the formula. f(3)=f(2)f(1)=14=3f(3) = f(2) - f(1) = 1 - 4 = -3
  2. Calculate f(4)f(4): Use the recursive formula to find f(4)f(4). We now have f(2)=1f(2) = 1 and f(3)=3f(3) = -3. Calculate f(4)f(4) using the formula. f(4)=f(3)f(2)=31=4f(4) = f(3) - f(2) = -3 - 1 = -4
  3. Determine f(5)f(5): Use the recursive formula to find f(5)f(5). We now have f(3)=3f(3) = -3 and f(4)=4f(4) = -4. Calculate f(5)f(5) using the formula. f(5)=f(4)f(3)=4(3)=4+3=1f(5) = f(4) - f(3) = -4 - (-3) = -4 + 3 = -1

More problems from Write and solve direct variation equations