Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=4,f(2)=1 and 
f(n)=3f(n-1)+f(n-2) then find the value of 
f(5).
Answer:

If f(1)=4,f(2)=1 f(1)=4, f(2)=1 and f(n)=3f(n1)+f(n2) f(n)=3 f(n-1)+f(n-2) then find the value of f(5) f(5) .\newlineAnswer:

Full solution

Q. If f(1)=4,f(2)=1 f(1)=4, f(2)=1 and f(n)=3f(n1)+f(n2) f(n)=3 f(n-1)+f(n-2) then find the value of f(5) f(5) .\newlineAnswer:
  1. Find f(3)f(3): Use the given initial conditions to find f(3)f(3). The recursive formula is f(n)=3f(n1)+f(n2)f(n) = 3f(n-1) + f(n-2). We know f(1)=4f(1) = 4 and f(2)=1f(2) = 1. Calculate f(3)f(3) using the formula. f(3)=3f(2)+f(1)=3(1)+4=3+4=7f(3) = 3f(2) + f(1) = 3(1) + 4 = 3 + 4 = 7.
  2. Find f(4)f(4): Use the values of f(2)f(2) and f(3)f(3) to find f(4)f(4). We have f(2)=1f(2) = 1 and f(3)=7f(3) = 7. Calculate f(4)f(4) using the formula. f(4)=3f(3)+f(2)=3(7)+1=21+1=22f(4) = 3f(3) + f(2) = 3(7) + 1 = 21 + 1 = 22.
  3. Find f(5)f(5): Use the values of f(3)f(3) and f(4)f(4) to find f(5)f(5). We have f(3)=7f(3) = 7 and f(4)=22f(4) = 22. Calculate f(5)f(5) using the formula. f(5)=3f(4)+f(3)=3(22)+7=66+7=73f(5) = 3f(4) + f(3) = 3(22) + 7 = 66 + 7 = 73.

More problems from Write and solve direct variation equations