Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=3,f(2)=1 and 
f(n)=f(n-1)-3f(n-2) then find the value of 
f(6).
Answer:

If f(1)=3,f(2)=1 f(1)=3, f(2)=1 and f(n)=f(n1)3f(n2) f(n)=f(n-1)-3 f(n-2) then find the value of f(6) f(6) .\newlineAnswer:

Full solution

Q. If f(1)=3,f(2)=1 f(1)=3, f(2)=1 and f(n)=f(n1)3f(n2) f(n)=f(n-1)-3 f(n-2) then find the value of f(6) f(6) .\newlineAnswer:
  1. Find f(3)f(3): Use the initial conditions to find f(3)f(3). The recursive formula is f(n)=f(n1)3f(n2)f(n) = f(n-1) - 3f(n-2). We know f(1)=3f(1) = 3 and f(2)=1f(2) = 1. Calculate f(3)f(3) using the formula. f(3)=f(2)3f(1)=13(3)=19=8f(3) = f(2) - 3f(1) = 1 - 3(3) = 1 - 9 = -8.
  2. Find f(4)f(4): Use the recursive formula to find f(4)f(4). We now have f(2)=1f(2) = 1 and f(3)=8f(3) = -8. Calculate f(4)f(4) using the formula. f(4)=f(3)3f(2)=83(1)=83=11f(4) = f(3) - 3f(2) = -8 - 3(1) = -8 - 3 = -11.
  3. Find f(5)f(5): Use the recursive formula to find f(5)f(5). We now have f(3)=8f(3) = -8 and f(4)=11f(4) = -11. Calculate f(5)f(5) using the formula. f(5)=f(4)3f(3)=113(8)=11+24=13f(5) = f(4) - 3f(3) = -11 - 3(-8) = -11 + 24 = 13.
  4. Find f(6)f(6): Use the recursive formula to find f(6)f(6). We now have f(4)=11f(4) = -11 and f(5)=13f(5) = 13. Calculate f(6)f(6) using the formula. f(6)=f(5)3f(4)=133(11)=13+33=46f(6) = f(5) - 3f(4) = 13 - 3(-11) = 13 + 33 = 46.

More problems from Write and solve direct variation equations