Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=2,f(2)=5 and 
f(n)=f(n-1)+3f(n-2) then find the value of 
f(5).
Answer:

If f(1)=2,f(2)=5 f(1)=2, f(2)=5 and f(n)=f(n1)+3f(n2) f(n)=f(n-1)+3 f(n-2) then find the value of f(5) f(5) .\newlineAnswer:

Full solution

Q. If f(1)=2,f(2)=5 f(1)=2, f(2)=5 and f(n)=f(n1)+3f(n2) f(n)=f(n-1)+3 f(n-2) then find the value of f(5) f(5) .\newlineAnswer:
  1. Find f(3)f(3): Use the given initial conditions to find f(3)f(3). The recursive formula is f(n)=f(n1)+3f(n2)f(n) = f(n-1) + 3f(n-2). We know f(1)=2f(1) = 2 and f(2)=5f(2) = 5. Now calculate f(3)f(3) using the formula. f(3)=f(2)+3f(1)=5+3(2)=5+6=11f(3) = f(2) + 3f(1) = 5 + 3(2) = 5 + 6 = 11.
  2. Find f(4)f(4): Use the recursive formula to find f(4)f(4). We have f(2)=5f(2) = 5 and f(3)=11f(3) = 11. Now calculate f(4)f(4) using the formula. f(4)=f(3)+3f(2)=11+3(5)=11+15=26f(4) = f(3) + 3f(2) = 11 + 3(5) = 11 + 15 = 26.
  3. Find f(5)f(5): Use the recursive formula to find f(5)f(5). We have f(3)=11f(3) = 11 and f(4)=26f(4) = 26. Now calculate f(5)f(5) using the formula. f(5)=f(4)+3f(3)=26+3(11)=26+33=59f(5) = f(4) + 3f(3) = 26 + 3(11) = 26 + 33 = 59.

More problems from Write and solve direct variation equations