Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=2,f(2)=5 and 
f(n)=3f(n-1)-2f(n-2) then find the value of 
f(5).
Answer:

If f(1)=2,f(2)=5 f(1)=2, f(2)=5 and f(n)=3f(n1)2f(n2) f(n)=3 f(n-1)-2 f(n-2) then find the value of f(5) f(5) .\newlineAnswer:

Full solution

Q. If f(1)=2,f(2)=5 f(1)=2, f(2)=5 and f(n)=3f(n1)2f(n2) f(n)=3 f(n-1)-2 f(n-2) then find the value of f(5) f(5) .\newlineAnswer:
  1. Find f(3)f(3): Use the given recursive formula to find f(3)f(3). The recursive formula is f(n)=3f(n1)2f(n2)f(n) = 3f(n-1) - 2f(n-2). We know f(1)=2f(1) = 2 and f(2)=5f(2) = 5. Calculate f(3)f(3) using f(2)f(2) and f(1)f(1). f(3)=3f(2)2f(1)=3×52×2=154=11f(3) = 3f(2) - 2f(1) = 3\times5 - 2\times2 = 15 - 4 = 11.
  2. Find f(4)f(4): Use the recursive formula to find f(4)f(4). Now that we have f(3)f(3), we can use it along with f(2)f(2) to find f(4)f(4). f(4)=3f(3)2f(2)=3×112×5=3310=23f(4) = 3f(3) - 2f(2) = 3\times11 - 2\times5 = 33 - 10 = 23.
  3. Find f(5)f(5): Use the recursive formula to find f(5)f(5).\newlineNow that we have f(4)f(4) and f(3)f(3), we can find f(5)f(5).\newlinef(5)=3f(4)2f(3)=3×232×11=6922=47f(5) = 3f(4) - 2f(3) = 3\times23 - 2\times11 = 69 - 22 = 47.

More problems from Write and solve direct variation equations