Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=2,f(2)=1 and 
f(n)=f(n-1)-f(n-2) then find the value of 
f(5).
Answer:

If f(1)=2,f(2)=1 f(1)=2, f(2)=1 and f(n)=f(n1)f(n2) f(n)=f(n-1)-f(n-2) then find the value of f(5) f(5) .\newlineAnswer:

Full solution

Q. If f(1)=2,f(2)=1 f(1)=2, f(2)=1 and f(n)=f(n1)f(n2) f(n)=f(n-1)-f(n-2) then find the value of f(5) f(5) .\newlineAnswer:
  1. Find f(3)f(3): Use the initial conditions to find f(3)f(3). The recursive formula is f(n)=f(n1)f(n2)f(n) = f(n-1) - f(n-2). We know f(1)=2f(1) = 2 and f(2)=1f(2) = 1. So, f(3)=f(2)f(1)=12=1f(3) = f(2) - f(1) = 1 - 2 = -1.
  2. Find f(4)f(4): Use the recursive formula to find f(4)f(4).\newlineNow we have f(2)=1f(2) = 1 and f(3)=1f(3) = -1.\newlineSo, f(4)=f(3)f(2)=11=2f(4) = f(3) - f(2) = -1 - 1 = -2.
  3. Find f(5)f(5): Use the recursive formula to find f(5)f(5).\newlineNow we have f(3)=1f(3) = -1 and f(4)=2f(4) = -2.\newlineSo, f(5)=f(4)f(3)=2(1)=2+1=1f(5) = f(4) - f(3) = -2 - (-1) = -2 + 1 = -1.

More problems from Write and solve direct variation equations