Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=10 and 
f(n)=-5f(n-1)-n then find the value of 
f(3).
Answer:

If f(1)=10 f(1)=10 and f(n)=5f(n1)n f(n)=-5 f(n-1)-n then find the value of f(3) f(3) .\newlineAnswer:

Full solution

Q. If f(1)=10 f(1)=10 and f(n)=5f(n1)n f(n)=-5 f(n-1)-n then find the value of f(3) f(3) .\newlineAnswer:
  1. Find f(2)f(2): Use the given recursive formula to find f(2)f(2). We know that f(1)=10f(1) = 10. To find f(2)f(2), we use the formula f(n)=5f(n1)nf(n) = -5f(n-1) - n with n=2n = 2. f(2)=5f(21)2f(2) = -5f(2-1) - 2 f(2)=5f(1)2f(2) = -5f(1) - 2 f(2)=5(10)2f(2) = -5(10) - 2 f(2)=502f(2) = -50 - 2 f(2)f(2)00
  2. Calculate f(3)f(3): Use the value of f(2)f(2) to find f(3)f(3).\newlineNow that we have f(2)=52f(2) = -52, we can use the formula f(n)=5f(n1)nf(n) = -5f(n-1) - n with n=3n = 3.\newlinef(3)=5f(31)3f(3) = -5f(3-1) - 3\newlinef(3)=5f(2)3f(3) = -5f(2) - 3\newlinef(3)=5(52)3f(3) = -5(-52) - 3\newlinef(3)=2603f(3) = 260 - 3\newlinef(2)f(2)00

More problems from Write and solve direct variation equations