Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=1,f(2)=4 and 
f(n)=f(n-1)-3f(n-2) then find the value of 
f(6).
Answer:

If f(1)=1,f(2)=4 f(1)=1, f(2)=4 and f(n)=f(n1)3f(n2) f(n)=f(n-1)-3 f(n-2) then find the value of f(6) f(6) .\newlineAnswer:

Full solution

Q. If f(1)=1,f(2)=4 f(1)=1, f(2)=4 and f(n)=f(n1)3f(n2) f(n)=f(n-1)-3 f(n-2) then find the value of f(6) f(6) .\newlineAnswer:
  1. Find f(3)f(3): Use the given initial conditions to find f(3)f(3). The recursive formula is f(n)=f(n1)3f(n2)f(n) = f(n-1) - 3f(n-2). We know f(1)=1f(1) = 1 and f(2)=4f(2) = 4. Calculate f(3)f(3) using the formula. f(3)=f(2)3f(1)=43(1)=43=1f(3) = f(2) - 3f(1) = 4 - 3(1) = 4 - 3 = 1.
  2. Find f(4)f(4): Use the recursive formula to find f(4)f(4).\newlineNow that we have f(3)f(3), we can find f(4)f(4).\newlinef(4)=f(3)3f(2)=13(4)=112=11f(4) = f(3) - 3f(2) = 1 - 3(4) = 1 - 12 = -11.
  3. Find f(5)f(5): Use the recursive formula to find f(5)f(5). With f(4)f(4) found, we can now find f(5)f(5). f(5)=f(4)3f(3)=113(1)=113=14f(5) = f(4) - 3f(3) = -11 - 3(1) = -11 - 3 = -14.
  4. Find f(6)f(6): Finally, use the recursive formula to find f(6)f(6). Now we can find f(6)f(6) using f(5)f(5) and f(4)f(4). f(6)=f(5)3f(4)=143(11)=14+33=19f(6) = f(5) - 3f(4) = -14 - 3(-11) = -14 + 33 = 19.

More problems from Write and solve direct variation equations