Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=1,f(2)=0 and 
f(n)=f(n-1)-3f(n-2) then find the value of 
f(6).
Answer:

If f(1)=1,f(2)=0 f(1)=1, f(2)=0 and f(n)=f(n1)3f(n2) f(n)=f(n-1)-3 f(n-2) then find the value of f(6) f(6) .\newlineAnswer:

Full solution

Q. If f(1)=1,f(2)=0 f(1)=1, f(2)=0 and f(n)=f(n1)3f(n2) f(n)=f(n-1)-3 f(n-2) then find the value of f(6) f(6) .\newlineAnswer:
  1. Find f(3)f(3): Use the initial conditions to find f(3)f(3). The recursive formula is f(n)=f(n1)3f(n2)f(n) = f(n-1) - 3f(n-2). We know f(1)=1f(1) = 1 and f(2)=0f(2) = 0. So, f(3)=f(2)3f(1)=03(1)=3f(3) = f(2) - 3f(1) = 0 - 3(1) = -3.
  2. Find f(4)f(4): Use the recursive formula to find f(4)f(4).\newlineNow we have f(2)=0f(2) = 0 and f(3)=3f(3) = -3.\newlineSo, f(4)=f(3)3f(2)=33(0)=3f(4) = f(3) - 3f(2) = -3 - 3(0) = -3.
  3. Find f(5)f(5): Use the recursive formula to find f(5)f(5). We have f(3)=3f(3) = -3 and f(4)=3f(4) = -3. So, f(5)=f(4)3f(3)=33(3)=3+9=6f(5) = f(4) - 3f(3) = -3 - 3(-3) = -3 + 9 = 6.
  4. Find f(6)f(6): Use the recursive formula to find f(6)f(6). We have f(4)=3f(4) = -3 and f(5)=6f(5) = 6. So, f(6)=f(5)3f(4)=63(3)=6+9=15f(6) = f(5) - 3f(4) = 6 - 3(-3) = 6 + 9 = 15.

More problems from Write and solve direct variation equations