Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=0,f(2)=5 and 
f(n)=2f(n-1)-2f(n-2) then find the value of 
f(5).
Answer:

If f(1)=0,f(2)=5 f(1)=0, f(2)=5 and f(n)=2f(n1)2f(n2) f(n)=2 f(n-1)-2 f(n-2) then find the value of f(5) f(5) .\newlineAnswer:

Full solution

Q. If f(1)=0,f(2)=5 f(1)=0, f(2)=5 and f(n)=2f(n1)2f(n2) f(n)=2 f(n-1)-2 f(n-2) then find the value of f(5) f(5) .\newlineAnswer:
  1. Find f(3)f(3): Use the initial conditions to find f(3)f(3). The recursive formula is f(n)=2f(n1)2f(n2)f(n) = 2f(n-1) - 2f(n-2). We know f(1)=0f(1) = 0 and f(2)=5f(2) = 5. Now calculate f(3)f(3) using the formula. f(3)=2f(2)2f(1)=2×52×0=100=10f(3) = 2f(2) - 2f(1) = 2\times 5 - 2\times 0 = 10 - 0 = 10.
  2. Find f(4)f(4): Use the recursive formula to find f(4)f(4). We have f(2)=5f(2) = 5 and f(3)=10f(3) = 10. Now calculate f(4)f(4) using the formula. f(4)=2f(3)2f(2)=2×102×5=2010=10f(4) = 2f(3) - 2f(2) = 2\times10 - 2\times5 = 20 - 10 = 10.
  3. Find f(5)f(5): Use the recursive formula to find f(5)f(5). We have f(3)=10f(3) = 10 and f(4)=10f(4) = 10. Now calculate f(5)f(5) using the formula. f(5)=2f(4)2f(3)=2×102×10=2020=0f(5) = 2f(4) - 2f(3) = 2\times10 - 2\times10 = 20 - 20 = 0.

More problems from Write and solve direct variation equations