Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=0,f(2)=3 and 
f(n)=2f(n-1)-f(n-2) then find the value of 
f(6).
Answer:

If f(1)=0,f(2)=3 f(1)=0, f(2)=3 and f(n)=2f(n1)f(n2) f(n)=2 f(n-1)-f(n-2) then find the value of f(6) f(6) .\newlineAnswer:

Full solution

Q. If f(1)=0,f(2)=3 f(1)=0, f(2)=3 and f(n)=2f(n1)f(n2) f(n)=2 f(n-1)-f(n-2) then find the value of f(6) f(6) .\newlineAnswer:
  1. Find f(3)f(3): Use the given initial conditions to find f(3)f(3). The recursive formula is f(n)=2f(n1)f(n2)f(n) = 2f(n-1) - f(n-2). We know f(1)=0f(1) = 0 and f(2)=3f(2) = 3. Calculate f(3)f(3) using the formula. f(3)=2f(2)f(1)=2×30=6f(3) = 2f(2) - f(1) = 2\times3 - 0 = 6.
  2. Find f(4)f(4): Use the recursive formula to find f(4)f(4). We now have f(2)=3f(2) = 3 and f(3)=6f(3) = 6. Calculate f(4)f(4) using the formula. f(4)=2f(3)f(2)=2×63=123=9f(4) = 2f(3) - f(2) = 2\times6 - 3 = 12 - 3 = 9.
  3. Find f(5)f(5): Use the recursive formula to find f(5)f(5). We now have f(3)=6f(3) = 6 and f(4)=9f(4) = 9. Calculate f(5)f(5) using the formula. f(5)=2f(4)f(3)=2×96=186=12f(5) = 2f(4) - f(3) = 2\times9 - 6 = 18 - 6 = 12.
  4. Find f(6)f(6): Use the recursive formula to find f(6)f(6). We now have f(4)=9f(4) = 9 and f(5)=12f(5) = 12. Calculate f(6)f(6) using the formula. f(6)=2f(5)f(4)=2×129=249=15f(6) = 2f(5) - f(4) = 2\times12 - 9 = 24 - 9 = 15.

More problems from Write and solve direct variation equations