Q. If f(1)=0,f(2)=3 and f(n)=2f(n−1)−f(n−2) then find the value of f(6).Answer:
Find f(3): Use the given initial conditions to find f(3). The recursive formula is f(n)=2f(n−1)−f(n−2). We know f(1)=0 and f(2)=3. Calculate f(3) using the formula. f(3)=2f(2)−f(1)=2×3−0=6.
Find f(4): Use the recursive formula to find f(4). We now have f(2)=3 and f(3)=6. Calculate f(4) using the formula. f(4)=2f(3)−f(2)=2×6−3=12−3=9.
Find f(5): Use the recursive formula to find f(5). We now have f(3)=6 and f(4)=9. Calculate f(5) using the formula. f(5)=2f(4)−f(3)=2×9−6=18−6=12.
Find f(6): Use the recursive formula to find f(6). We now have f(4)=9 and f(5)=12. Calculate f(6) using the formula. f(6)=2f(5)−f(4)=2×12−9=24−9=15.
More problems from Write and solve direct variation equations