Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=5,a_(2)=2 and 
a_(n)=3a_(n-1)+2a_(n-2) then find the value of 
a_(4).
Answer:

If a1=5,a2=2 a_{1}=5, a_{2}=2 and an=3an1+2an2 a_{n}=3 a_{n-1}+2 a_{n-2} then find the value of a4 a_{4} .\newlineAnswer:

Full solution

Q. If a1=5,a2=2 a_{1}=5, a_{2}=2 and an=3an1+2an2 a_{n}=3 a_{n-1}+2 a_{n-2} then find the value of a4 a_{4} .\newlineAnswer:
  1. Understand Recursive Formula: Understand the recursive formula and initial conditions.\newlineThe recursive formula given is an=3an1+2an2a_{n}=3a_{n-1}+2a_{n-2}, which means each term is generated by multiplying the previous term by 33 and the term before that by 22, then adding them together. We are given a1=5a_{1}=5 and a2=2a_{2}=2 as initial conditions.
  2. Find a3a_{3} Value: Find the value of a3a_{3} using the recursive formula.\newlineUsing the formula an=3an1+2an2a_{n}=3a_{n-1}+2a_{n-2}, we substitute n=3n=3 to find a3a_{3}.\newlinea3=3a2+2a1a_{3} = 3a_{2} + 2a_{1}\newlinea3=3(2)+2(5)a_{3} = 3(2) + 2(5)\newlinea3=6+10a_{3} = 6 + 10\newlinea3=16a_{3} = 16
  3. Find a4a_{4} Value: Find the value of a4a_{4} using the recursive formula and the values of a2a_{2} and a3a_{3}. Now we use the formula an=3an1+2an2a_{n}=3a_{n-1}+2a_{n-2} with n=4n=4, a3=16a_{3}=16, and a2=2a_{2}=2. a4=3a3+2a2a_{4} = 3a_{3} + 2a_{2} a4=3(16)+2(2)a_{4} = 3(16) + 2(2) a4a_{4}00 a4a_{4}11

More problems from Write and solve direct variation equations