Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=5,a_(2)=1 and 
a_(n)=3a_(n-1)-2a_(n-2) then find the value of 
a_(6).
Answer:

If a1=5,a2=1 a_{1}=5, a_{2}=1 and an=3an12an2 a_{n}=3 a_{n-1}-2 a_{n-2} then find the value of a6 a_{6} .\newlineAnswer:

Full solution

Q. If a1=5,a2=1 a_{1}=5, a_{2}=1 and an=3an12an2 a_{n}=3 a_{n-1}-2 a_{n-2} then find the value of a6 a_{6} .\newlineAnswer:
  1. Understand Formula and Conditions: Understand the recursive formula and initial conditions.\newlineThe recursive formula given is an=3an12an2a_{n}=3a_{n-1}-2a_{n-2}, which means each term is calculated by tripling the previous term and subtracting twice the term before the previous one. We are given a1=5a_{1}=5 and a2=1a_{2}=1 as initial conditions.
  2. Calculate Third Term: Calculate the third term using the recursive formula.\newlinea3=3a22a1a_{3} = 3a_{2} - 2a_{1}\newlinea3=3(1)2(5)a_{3} = 3(1) - 2(5)\newlinea3=310a_{3} = 3 - 10\newlinea3=7a_{3} = -7
  3. Calculate Fourth Term: Calculate the fourth term using the recursive formula.\newlinea4=3a32a2a_{4} = 3a_{3} - 2a_{2}\newlinea4=3(7)2(1)a_{4} = 3(-7) - 2(1)\newlinea4=212a_{4} = -21 - 2\newlinea4=23a_{4} = -23
  4. Calculate Fifth Term: Calculate the fifth term using the recursive formula.\newlinea5=3a42a3a_{5} = 3a_{4} - 2a_{3}\newlinea5=3(23)2(7)a_{5} = 3(-23) - 2(-7)\newlinea5=69+14a_{5} = -69 + 14\newlinea5=55a_{5} = -55
  5. Calculate Sixth Term: Calculate the sixth term using the recursive formula.\newlinea6=3a52a4a_{6} = 3a_{5} - 2a_{4}\newlinea6=3(55)2(23)a_{6} = 3(-55) - 2(-23)\newlinea6=165+46a_{6} = -165 + 46\newlinea6=119a_{6} = -119

More problems from Write and solve direct variation equations