Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=5,a_(2)=0 and 
a_(n)=a_(n-1)+3a_(n-2) then find the value of 
a_(5).
Answer:

If a1=5,a2=0 a_{1}=5, a_{2}=0 and an=an1+3an2 a_{n}=a_{n-1}+3 a_{n-2} then find the value of a5 a_{5} .\newlineAnswer:

Full solution

Q. If a1=5,a2=0 a_{1}=5, a_{2}=0 and an=an1+3an2 a_{n}=a_{n-1}+3 a_{n-2} then find the value of a5 a_{5} .\newlineAnswer:
  1. Understand recursive formula: Understand the recursive formula and initial conditions.\newlineThe recursive formula is given by an=an1+3an2a_{n}=a_{n-1}+3a_{n-2}. This means that each term in the sequence is the sum of the previous term and three times the term before that. We are given a1=5a_{1}=5 and a2=0a_{2}=0 as initial conditions.
  2. Find a3a_{3}: Find a3a_{3} using the recursive formula.\newlinea3=a2+3a1a_{3} = a_{2} + 3a_{1}\newlineSubstitute the given values: a3=0+3×5a_{3} = 0 + 3\times5\newlineCalculate a3a_{3}: a3=15a_{3} = 15
  3. Find a4a_{4}: Find a4a_{4} using the recursive formula.a4=a3+3a2a_{4} = a_{3} + 3a_{2}Substitute the values found: a4=15+3×0a_{4} = 15 + 3\times 0Calculate a4a_{4}: a4=15a_{4} = 15
  4. Find a5a_{5}: Find a5a_{5} using the recursive formula.\newlinea5=a4+3a3a_{5} = a_{4} + 3a_{3}\newlineSubstitute the values found: a5=15+3×15a_{5} = 15 + 3\times15\newlineCalculate a5a_{5}: a5=15+45a_{5} = 15 + 45\newlineCalculate a5a_{5}: a5=60a_{5} = 60

More problems from Write and solve direct variation equations