Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=4,a_(2)=5 and 
a_(n)=2a_(n-1)+a_(n-2) then find the value of 
a_(4).
Answer:

If a1=4,a2=5 a_{1}=4, a_{2}=5 and an=2an1+an2 a_{n}=2 a_{n-1}+a_{n-2} then find the value of a4 a_{4} .\newlineAnswer:

Full solution

Q. If a1=4,a2=5 a_{1}=4, a_{2}=5 and an=2an1+an2 a_{n}=2 a_{n-1}+a_{n-2} then find the value of a4 a_{4} .\newlineAnswer:
  1. Understand Recursive Formula: Understand the recursive formula and initial conditions.\newlineThe recursive formula given is an=2an1+an2a_{n}=2a_{n-1}+a_{n-2}, which means each term is the sum of twice the previous term and the term before that. We are given a1=4a_{1}=4 and a2=5a_{2}=5 as initial conditions.
  2. Find a3a_{3} Value: Find the value of a3a_{3} using the recursive formula.\newlineUsing the formula an=2an1+an2a_{n}=2a_{n-1}+a_{n-2}, we substitute n=3n=3 to find a3a_{3}.\newlinea3=2a2+a1a_{3} = 2a_{2} + a_{1}\newlinea3=2×5+4a_{3} = 2\times 5 + 4\newlinea3=10+4a_{3} = 10 + 4\newlinea3=14a_{3} = 14
  3. Find a4a_4 Value: Find the value of a4a_4 using the recursive formula and the values of a2a_2 and a3a_3. Now we use the formula an=2an1+an2a_n=2a_{n-1}+a_{n-2} with n=4n=4. a4=2a3+a2a_4 = 2a_3 + a_2 a4=2×14+5a_4 = 2\times14 + 5 a4=28+5a_4 = 28 + 5 a4=33a_4 = 33

More problems from Write and solve direct variation equations