Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=4,a_(2)=2 and 
a_(n)=2a_(n-1)+a_(n-2) then find the value of 
a_(6).
Answer:

If a1=4,a2=2 a_{1}=4, a_{2}=2 and an=2an1+an2 a_{n}=2 a_{n-1}+a_{n-2} then find the value of a6 a_{6} .\newlineAnswer:

Full solution

Q. If a1=4,a2=2 a_{1}=4, a_{2}=2 and an=2an1+an2 a_{n}=2 a_{n-1}+a_{n-2} then find the value of a6 a_{6} .\newlineAnswer:
  1. Understand recursive formula: Understand the recursive formula and initial conditions.\newlineThe recursive formula given is an=2an1+an2a_{n}=2a_{n-1}+a_{n-2}, which means each term is the sum of twice the previous term and the term before that. We are given a1=4a_{1}=4 and a2=2a_{2}=2 as initial conditions.
  2. Find a3a_{3}: Find a3a_{3} using the recursive formula.\newlinea3=2a2+a1(a_{3} = 2a_{2} + a_{1}(\newline = 2\times 2 + 4(\newline\) = 4 + 4(\newline\) = 8\)
  3. Find a4a_{4}: Find a4a_{4} using the recursive formula.a4=2a3+a2a_{4} = 2a_{3} + a_{2}=2×8+2= 2\times 8 + 2=16+2= 16 + 2=18= 18
  4. Find a5a_{5}: Find a5a_{5} using the recursive formula.a5=2a4+a3a_{5} = 2a_{4} + a_{3}=2×18+8= 2\times18 + 8=36+8= 36 + 8=44= 44
  5. Find a6a_{6}: Find a6a_{6} using the recursive formula.\newlinea6=2a5+a4(a_{6} = 2a_{5} + a_{4}(\newline = 2\times44 + 18(\newline\) = 88 + 18(\newline\) = 106\)

More problems from Write and solve direct variation equations