Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=2,a_(2)=5 and 
a_(n)=2a_(n-1)-a_(n-2) then find the value of 
a_(5).
Answer:

If a1=2,a2=5 a_{1}=2, a_{2}=5 and an=2an1an2 a_{n}=2 a_{n-1}-a_{n-2} then find the value of a5 a_{5} .\newlineAnswer:

Full solution

Q. If a1=2,a2=5 a_{1}=2, a_{2}=5 and an=2an1an2 a_{n}=2 a_{n-1}-a_{n-2} then find the value of a5 a_{5} .\newlineAnswer:
  1. Find a3a_{3}: Use the given recursive formula to find a3a_{3}. The recursive formula is an=2an1an2a_{n}=2a_{n-1}-a_{n-2}. We know a1=2a_{1}=2 and a2=5a_{2}=5. Calculate a3a_{3} using the formula. a3=2a2a1=2×52=102=8a_{3} = 2a_{2} - a_{1} = 2\times5 - 2 = 10 - 2 = 8.
  2. Find a4a_{4}: Use the recursive formula to find a4a_{4}. We now know a2=5a_{2}=5 and a3=8a_{3}=8. Calculate a4a_{4} using the formula. a4=2a3a2=2×85=165=11a_{4} = 2a_{3} - a_{2} = 2\times8 - 5 = 16 - 5 = 11.
  3. Find a5a_{5}: Use the recursive formula to find a5a_{5}. We now know a3=8a_{3}=8 and a4=11a_{4}=11. Calculate a5a_{5} using the formula. a5=2a4a3=2×118=228=14a_{5} = 2a_{4} - a_{3} = 2\times11 - 8 = 22 - 8 = 14.

More problems from Write and solve direct variation equations