Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=0,a_(2)=3 and 
a_(n)=3a_(n-1)-a_(n-2) then find the value of 
a_(4).
Answer:

If a1=0,a2=3 a_{1}=0, a_{2}=3 and an=3an1an2 a_{n}=3 a_{n-1}-a_{n-2} then find the value of a4 a_{4} .\newlineAnswer:

Full solution

Q. If a1=0,a2=3 a_{1}=0, a_{2}=3 and an=3an1an2 a_{n}=3 a_{n-1}-a_{n-2} then find the value of a4 a_{4} .\newlineAnswer:
  1. Find a3a_{3}: Use the given recursive formula to find a3a_{3}. The recursive formula is an=3an1an2a_{n}=3a_{n-1}-a_{n-2}. We know a1=0a_{1}=0 and a2=3a_{2}=3. Substitute n=3n=3 into the formula to find a3a_{3}. a3=3a31a32a_{3} = 3a_{3-1} - a_{3-2} a3=3a2a1a_{3} = 3a_{2} - a_{1} a3=3×30a_{3} = 3\times3 - 0 a3a_{3}00 a3a_{3}11
  2. Find a4a_{4}: Use the recursive formula to find a4a_{4}. Now that we have a3a_{3}, we can use the formula again to find a4a_{4}. a4=3a41a42a_{4} = 3a_{4-1} - a_{4-2} a4=3a3a2a_{4} = 3a_{3} - a_{2} a4=3×93a_{4} = 3\times9 - 3 a4=273a_{4} = 27 - 3 a4=24a_{4} = 24

More problems from Write and solve direct variation equations