Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=0,a_(2)=3 and 
a_(n)=2a_(n-1)-a_(n-2) then find the value of 
a_(4).
Answer:

If a1=0,a2=3 a_{1}=0, a_{2}=3 and an=2an1an2 a_{n}=2 a_{n-1}-a_{n-2} then find the value of a4 a_{4} .\newlineAnswer:

Full solution

Q. If a1=0,a2=3 a_{1}=0, a_{2}=3 and an=2an1an2 a_{n}=2 a_{n-1}-a_{n-2} then find the value of a4 a_{4} .\newlineAnswer:
  1. Understand recursive formula: Understand the recursive formula and initial conditions.\newlineThe recursive formula given is an=2an1an2a_{n}=2a_{n-1}-a_{n-2}, which means each term is calculated by doubling the previous term and subtracting the term before that. We are given a1=0a_{1}=0 and a2=3a_{2}=3 as initial conditions.
  2. Find a3a_{3}: Find the value of a3a_{3} using the recursive formula.\newlineUsing the formula an=2an1an2a_{n}=2a_{n-1}-a_{n-2}, we substitute n=3n=3 to find a3a_{3}.\newlinea3=2a31a32a_{3} = 2a_{3-1} - a_{3-2}\newlinea3=2a2a1a_{3} = 2a_{2} - a_{1}\newlinea3=2×30a_{3} = 2\times3 - 0\newlinea3=60a_{3} = 6 - 0\newlinea3=6a_{3} = 6
  3. Find a4a_{4}: Find the value of a4a_{4} using the recursive formula.\newlineNow that we have a3a_{3}, we can use the formula an=2an1an2a_{n}=2a_{n-1}-a_{n-2} to find a4a_{4}.\newlinea4=2a41a42a_{4} = 2a_{4-1} - a_{4-2}\newlinea4=2a3a2a_{4} = 2a_{3} - a_{2}\newlinea4=2×63a_{4} = 2\times 6 - 3\newlinea4=123a_{4} = 12 - 3\newlinea4=9a_{4} = 9

More problems from Write and solve direct variation equations