Q. Given that f(x)=4x,g(x)=x−1 and h(x)=2f(x+3)−2g(x), then what is the value of h(6) ?Answer:
Define h(x): Define the function h(x) in terms of f(x) and g(x).h(x)=2f(x+3)−2g(x)We need to find the value of h(6), so we will substitute x with 6 in the functions f(x) and g(x) later on.
Calculate f(x+3): Calculate f(x+3) when x=6.f(x)=4x, so f(x+3)=4(x+3).Now substitute x with 6.f(6+3)=4(6+3)=4(9)=36.
Calculate g(x): Calculate g(x) when x=6.g(x)=x−1, so g(6)=6−1=5.
Substitute values into h(x): Substitute the values of f(x+3) and g(x) into h(x). h(x)=2f(x+3)−2g(x). Now substitute f(6+3) and g(6) into h(6). h(6)=2f(6+3)−2g(6)=2(36)−2(5)=72−10=62.
More problems from Write and solve direct variation equations