Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given that 
f(x)=3x,g(x)=x+3 and 
h(x)=2f(x+1)+3g(x), then what is the value of 
h(6) ?
Answer:

Given that f(x)=3x,g(x)=x+3 f(x)=3 x, g(x)=x+3 and h(x)=2f(x+1)+3g(x) h(x)=2 f(x+1)+3 g(x) , then what is the value of h(6) h(6) ?\newlineAnswer:

Full solution

Q. Given that f(x)=3x,g(x)=x+3 f(x)=3 x, g(x)=x+3 and h(x)=2f(x+1)+3g(x) h(x)=2 f(x+1)+3 g(x) , then what is the value of h(6) h(6) ?\newlineAnswer:
  1. Understand Given Functions: Understand the functions given and what is being asked.\newlineWe are given three functions f(x)f(x), g(x)g(x), and h(x)h(x), and we need to find the value of h(6)h(6).
  2. Calculate f(7)f(7): Calculate f(6+1)f(6+1) since h(x)h(x) involves f(x+1)f(x+1).\newlinef(x)=3xf(x) = 3x, so f(6+1)=f(7)=3×7f(6+1) = f(7) = 3 \times 7.
  3. Calculate g(6)g(6): Calculate the value of f(7)f(7).f(7)=3×7=21f(7) = 3 \times 7 = 21.
  4. Calculate h(6)h(6): Calculate g(6)g(6) since h(x)h(x) involves g(x)g(x).g(x)=x+3g(x) = x + 3, so g(6)=6+3g(6) = 6 + 3.
  5. Substitute Values for h(6)h(6): Calculate the value of g(6)g(6).g(6)=6+3=9g(6) = 6 + 3 = 9.
  6. Perform Calculations: Use the values of f(7)f(7) and g(6)g(6) to calculate h(6)h(6).h(x)=2f(x+1)+3g(x)h(x) = 2f(x+1) + 3g(x), so h(6)=2f(7)+3g(6)h(6) = 2f(7) + 3g(6).
  7. Add Results for h(6)h(6): Substitute the values of f(7)f(7) and g(6)g(6) into the equation for h(6)h(6). \newlineh(6)=2×21+3×9.h(6) = 2 \times 21 + 3 \times 9.
  8. Add Results for h(6)h(6): Substitute the values of f(7)f(7) and g(6)g(6) into the equation for h(6)h(6).
    h(6)=2×21+3×9h(6) = 2 \times 21 + 3 \times 9. Perform the calculations.
    h(6)=2×21+3×9=42+27h(6) = 2 \times 21 + 3 \times 9 = 42 + 27.
  9. Add Results for h(6)h(6): Substitute the values of f(7)f(7) and g(6)g(6) into the equation for h(6)h(6).
    h(6)=2×21+3×9h(6) = 2 \times 21 + 3 \times 9. Perform the calculations.
    h(6)=2×21+3×9=42+27h(6) = 2 \times 21 + 3 \times 9 = 42 + 27. Add the results to find h(6)h(6).
    h(6)=42+27=69h(6) = 42 + 27 = 69.

More problems from Write and solve direct variation equations