Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given 
h(x)=-x+3, solve for 
x when 
h(x)=0.
Answer:

Given h(x)=x+3 h(x)=-x+3 , solve for x x when h(x)=0 h(x)=0 .\newlineAnswer:

Full solution

Q. Given h(x)=x+3 h(x)=-x+3 , solve for x x when h(x)=0 h(x)=0 .\newlineAnswer:
  1. Set Equation to 00: Set the function h(x)h(x) equal to 00. We are given h(x)=x+3h(x) = -x + 3 and need to find xx when h(x)=0h(x) = 0. So, we set up the equation 0=x+30 = -x + 3.
  2. Solve for x: Solve for x.\newlineTo find xx, we need to isolate it on one side of the equation.\newlineWe can do this by adding xx to both sides and subtracting 33 from both sides.\newline0+x=x+x+330 + x = -x + x + 3 - 3\newlinex=3x = 3
  3. Check Solution: Check the solution.\newlineSubstitute xx back into the original function to verify that h(x)h(x) equals 00.\newlineh(x)=x+3h(x) = -x + 3\newlineh(3)=(3)+3h(3) = -(3) + 3\newlineh(3)=3+3h(3) = -3 + 3\newlineh(3)=0h(3) = 0\newlineThe solution x=3x = 3 makes h(x)h(x) equal to 00, so it is correct.

More problems from Write and solve direct variation equations