Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given 
f(x)=2sec(2x), find 
f^(')(x).
Answer: 
f^(')(x)=

Given f(x)=2sec(2x) f(x)=2 \sec (2 x) , find f(x) f^{\prime}(x) .\newlineAnswer: f(x)= f^{\prime}(x)=

Full solution

Q. Given f(x)=2sec(2x) f(x)=2 \sec (2 x) , find f(x) f^{\prime}(x) .\newlineAnswer: f(x)= f^{\prime}(x)=
  1. Apply Chain Rule: To find the derivative of the function f(x)=2sec(2x)f(x) = 2\sec(2x), we need to apply the chain rule. The chain rule states that the derivative of a composite function is the derivative of the outer function evaluated at the inner function times the derivative of the inner function.
  2. Identify Outer and Inner Functions: The outer function is sec(u)\sec(u) where u=2xu = 2x, and the inner function is 2x2x. The derivative of sec(u)\sec(u) with respect to uu is sec(u)tan(u)\sec(u)\tan(u), and the derivative of 2x2x with respect to xx is 22.
  3. Use Chain Rule Formula: Now we apply the chain rule: f(x)=ddx[2sec(2x)]=2ddx[sec(2x)]=2sec(2x)tan(2x)ddx[2x].f'(x) = \frac{d}{dx}[2\sec(2x)] = 2 \cdot \frac{d}{dx}[\sec(2x)] = 2 \cdot \sec(2x)\tan(2x) \cdot \frac{d}{dx}[2x].
  4. Substitute Inner Function Derivative: We already determined that ddx[2x]\frac{d}{dx}[2x] is 22, so we can substitute this into our expression: f(x)=2sec(2x)tan(2x)2f'(x) = 2 \cdot \sec(2x)\tan(2x) \cdot 2.
  5. Simplify Expression: Simplify the expression by multiplying the constants: f(x)=4sec(2x)tan(2x)f'(x) = 4\sec(2x)\tan(2x).

More problems from Evaluate a nonlinear function