Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
-x^(2)=-5y^(2)+y^(3) then find 
(dy)/(dx) at the point 
(2,1).
Answer: 
(dy)/(dx)|_((2,1))=

If x2=5y2+y3 -x^{2}=-5 y^{2}+y^{3} then find dydx \frac{d y}{d x} at the point (2,1) (2,1) .\newlineAnswer: dydx(2,1)= \left.\frac{d y}{d x}\right|_{(2,1)}=

Full solution

Q. If x2=5y2+y3 -x^{2}=-5 y^{2}+y^{3} then find dydx \frac{d y}{d x} at the point (2,1) (2,1) .\newlineAnswer: dydx(2,1)= \left.\frac{d y}{d x}\right|_{(2,1)}=
  1. Apply Implicit Differentiation: First, we need to differentiate both sides of the equation with respect to xx, using implicit differentiation, because yy is a function of xx. Differentiate x2-x^2 to get 2x-2x. Differentiate 5y2-5y^2 with respect to xx to get 10ydydx-10y\frac{dy}{dx}. Differentiate y3y^3 with respect to xx to get yy00. The differentiated equation is: yy11.
  2. Factor Out (dydx):</b>Now,weneedtosolvefor$(dydx)(\frac{dy}{dx}):</b> Now, we need to solve for \$(\frac{dy}{dx}) by factoring it out from the terms on the right side of the equation.\newlineGroup the terms with (dydx)(\frac{dy}{dx}) together: 2x=(dydx)(10y+3y2)-2x = (\frac{dy}{dx})(-10y + 3y^2).
  3. Isolate (dydx):</b>Next,isolate$(dydx)(\frac{dy}{dx}):</b> Next, isolate \$(\frac{dy}{dx}) by dividing both sides of the equation by (10y+3y2)(-10y + 3y^2).\newline(dydx)=2x(10y+3y2)(\frac{dy}{dx}) = \frac{-2x}{(-10y + 3y^2)}.
  4. Substitute Point: Now we need to substitute the point (2,1)(2,1) into the equation to find the value of (dydx)(\frac{dy}{dx}) at that point.\newlineSubstitute x=2x = 2 and y=1y = 1 into the equation: (dydx)=2(2)(10(1)+3(1)2)(\frac{dy}{dx}) = \frac{-2(2)}{(-10(1) + 3(1)^2)}.
  5. Calculate (\frac{dy}{dx}): Perform the calculations to find the value of \$(\frac{dy}{dx}).\(\newline\$(\frac{dy}{dx}) = \frac{-4}{(-10 + 3)} = \frac{-4}{(-7)} = \frac{4}{7}.\)

More problems from Evaluate a nonlinear function