Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
-3-3x^(2)-5y=-y^(3)-y^(2) then find 
(dy)/(dx) at the point 
(-1,-2).
Answer: 
(dy)/(dx)|_((-1,-2))=

If 33x25y=y3y2 -3-3 x^{2}-5 y=-y^{3}-y^{2} then find dydx \frac{d y}{d x} at the point (1,2) (-1,-2) .\newlineAnswer: dydx(1,2)= \left.\frac{d y}{d x}\right|_{(-1,-2)}=

Full solution

Q. If 33x25y=y3y2 -3-3 x^{2}-5 y=-y^{3}-y^{2} then find dydx \frac{d y}{d x} at the point (1,2) (-1,-2) .\newlineAnswer: dydx(1,2)= \left.\frac{d y}{d x}\right|_{(-1,-2)}=
  1. Rewrite equation: First, we need to rewrite the given equation to make it easier to differentiate with respect to xx. The given equation is: 33x25y=y3y2-3 - 3x^2 - 5y = -y^3 - y^2 We can rewrite this as: 3x2+5y+3=y3+y23x^2 + 5y + 3 = y^3 + y^2
  2. Differentiate with respect to xx: Next, we differentiate both sides of the equation with respect to xx, keeping in mind that yy is a function of xx, so we will use the chain rule for terms involving yy.
    ddx(3x2+5y+3)=ddx(y3+y2)\frac{d}{dx}(3x^2 + 5y + 3) = \frac{d}{dx}(y^3 + y^2)
    This gives us: 6x+5dydx=3y2dydx+2ydydx6x + 5\frac{dy}{dx} = 3y^2\frac{dy}{dx} + 2y\frac{dy}{dx}
  3. Solve for dydx\frac{dy}{dx}: Now, we need to solve for dydx\frac{dy}{dx}. To do this, we collect all the terms involving dydx\frac{dy}{dx} on one side of the equation.\newline5(dydx)3y2(dydx)2y(dydx)=6x5\left(\frac{dy}{dx}\right) - 3y^2\left(\frac{dy}{dx}\right) - 2y\left(\frac{dy}{dx}\right) = -6x\newlineThis simplifies to: (53y22y)(dydx)=6x(5 - 3y^2 - 2y)\left(\frac{dy}{dx}\right) = -6x
  4. Isolate dydx\frac{dy}{dx}: We can now isolate dydx\frac{dy}{dx} by dividing both sides of the equation by (53y22y)(5 - 3y^2 - 2y).dydx=6x(53y22y)\frac{dy}{dx} = \frac{-6x}{(5 - 3y^2 - 2y)}
  5. Substitute point: Finally, we substitute the point (1,2)(-1, -2) into the equation to find the value of dydx\frac{dy}{dx} at that point.\newline(dydx)(1,2)=6(1)(53(2)22(2))\left(\frac{dy}{dx}\right)|_{(-1,-2)} = \frac{-6(-1)}{(5 - 3(-2)^2 - 2(-2))}\newlineThis simplifies to: (dydx)(1,2)=6(53(4)+4)\left(\frac{dy}{dx}\right)|_{(-1,-2)} = \frac{6}{(5 - 3(4) + 4)}
  6. Calculate denominator: Now we calculate the denominator: 53(4)+4=512+4=7+4=35 - 3(4) + 4 = 5 - 12 + 4 = -7 + 4 = -3\newlineSo, (dy/dx)(1,2)=6/3(dy/dx)|_{(-1,-2)} = 6 / -3
  7. Find dydx\frac{dy}{dx}: Finally, we find the value of dydx\frac{dy}{dx} at the point (1,2)(-1, -2).(dydx)(1,2)=63=2\left(\frac{dy}{dx}\right)|_{(-1,-2)} = \frac{6}{-3} = -2

More problems from Evaluate a nonlinear function