Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
y^(2)=2x^(2)+y then find 
(dy)/(dx) at the point 
(1,2).
Answer: 
(dy)/(dx)|_((1,2))=

If y2=2x2+y y^{2}=2 x^{2}+y then find dydx \frac{d y}{d x} at the point (1,2) (1,2) .\newlineAnswer: dydx(1,2)= \left.\frac{d y}{d x}\right|_{(1,2)}=

Full solution

Q. If y2=2x2+y y^{2}=2 x^{2}+y then find dydx \frac{d y}{d x} at the point (1,2) (1,2) .\newlineAnswer: dydx(1,2)= \left.\frac{d y}{d x}\right|_{(1,2)}=
  1. Differentiate and Solve: First, we need to differentiate both sides of the equation with respect to xx to find dydx\frac{dy}{dx}.\newlineGiven equation: y2=2x2+yy^2 = 2x^2 + y\newlineDifferentiating both sides with respect to xx, we get:\newlineddx(y2)=ddx(2x2)+ddx(y)\frac{d}{dx}(y^2) = \frac{d}{dx}(2x^2) + \frac{d}{dx}(y)\newlineUsing the chain rule for ddx(y2)\frac{d}{dx}(y^2), power rule for ddx(2x2)\frac{d}{dx}(2x^2), and remembering to apply the chain rule for ddx(y)\frac{d}{dx}(y) since yy is a function of xx, we have:\newlinedydx\frac{dy}{dx}00
  2. Isolate dydx\frac{dy}{dx}: Now, we need to solve for dydx\frac{dy}{dx}.\newlineRearrange the terms to isolate dydx\frac{dy}{dx} on one side:\newline2ydydxdydx=4x2y \cdot \frac{dy}{dx} - \frac{dy}{dx} = 4x\newlineFactor out dydx\frac{dy}{dx}:\newlinedydx(2y1)=4x\frac{dy}{dx} \cdot (2y - 1) = 4x\newlineDivide both sides by (2y1)(2y - 1) to solve for dydx\frac{dy}{dx}:\newlinedydx=4x2y1\frac{dy}{dx} = \frac{4x}{2y - 1}
  3. Substitute and Simplify: Next, we substitute the given point (1,2)(1,2) into the equation to find the specific value of dydx\frac{dy}{dx} at that point.\newlineSubstitute x=1x = 1 and y=2y = 2 into the equation:\newlinedydx=4(1)(2(2)1)\frac{dy}{dx} = \frac{4(1)}{(2(2) - 1)}\newlineSimplify the equation:\newlinedydx=4(41)\frac{dy}{dx} = \frac{4}{(4 - 1)}\newlinedydx=43\frac{dy}{dx} = \frac{4}{3}

More problems from Evaluate a nonlinear function