Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
5x^(2)-5-3y^(2)=0 then find 
(dy)/(dx) at the point 
(4,5).
Answer: 
(dy)/(dx)|_((4,5))=

If 5x253y2=0 5 x^{2}-5-3 y^{2}=0 then find dydx \frac{d y}{d x} at the point (4,5) (4,5) .\newlineAnswer: dydx(4,5)= \left.\frac{d y}{d x}\right|_{(4,5)}=

Full solution

Q. If 5x253y2=0 5 x^{2}-5-3 y^{2}=0 then find dydx \frac{d y}{d x} at the point (4,5) (4,5) .\newlineAnswer: dydx(4,5)= \left.\frac{d y}{d x}\right|_{(4,5)}=
  1. Implicit Differentiation: To find dydx\frac{dy}{dx}, we need to differentiate the given equation implicitly with respect to xx. The given equation is 5x253y2=05x^2 - 5 - 3y^2 = 0. Differentiating both sides with respect to xx, we get: \frac{d}{dx}(\(5x^22) - \frac{d}{dx}(55) - \frac{d}{dx}(33y^22) = \frac{d}{dx}(00)
  2. Derivative Calculation: Differentiating each term separately, we have:\newlineddx(5x2)=10x\frac{d}{dx}(5x^2) = 10x (since the derivative of x2x^2 with respect to xx is 2x2x, and we multiply by the constant 55),\newlineddx(5)=0\frac{d}{dx}(5) = 0 (since the derivative of a constant is 00),\newlineddx(3y2)=6ydydx\frac{d}{dx}(3y^2) = 6y\frac{dy}{dx} (since we are differentiating with respect to xx, yy is treated as a function of xx, so we use the chain rule).\newlineSo, we have x2x^211.
  3. Solving for dydx\frac{dy}{dx}: Now we solve for dydx\frac{dy}{dx}:10x6y(dydx)=010x - 6y\left(\frac{dy}{dx}\right) = 06y(dydx)=10x6y\left(\frac{dy}{dx}\right) = 10xdydx=10x6y\frac{dy}{dx} = \frac{10x}{6y}
  4. Substitution of Given Point: We substitute the given point (4,5)(4,5) into the equation to find the value of dydx\frac{dy}{dx} at that point:\newline(dydx)(4,5)=10(4)6(5)\left(\frac{dy}{dx}\right)|_{(4,5)} = \frac{10(4)}{6(5)}
  5. Final Calculation: Perform the calculation:\newline(dydx)(4,5)=4030(\frac{dy}{dx})|_{(4,5)} = \frac{40}{30}\newline(dydx)(4,5)=43(\frac{dy}{dx})|_{(4,5)} = \frac{4}{3}

More problems from Evaluate a nonlinear function