Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
y^(2)+3x^(3)=2y then find 
(dy)/(dx) at the point 
(-1,3).
Answer: 
(dy)/(dx)|_((-1,3))=

If y2+3x3=2y y^{2}+3 x^{3}=2 y then find dydx \frac{d y}{d x} at the point (1,3) (-1,3) .\newlineAnswer: dydx(1,3)= \left.\frac{d y}{d x}\right|_{(-1,3)}=

Full solution

Q. If y2+3x3=2y y^{2}+3 x^{3}=2 y then find dydx \frac{d y}{d x} at the point (1,3) (-1,3) .\newlineAnswer: dydx(1,3)= \left.\frac{d y}{d x}\right|_{(-1,3)}=
  1. Differentiate and Simplify: To find dydx\frac{dy}{dx}, we need to differentiate both sides of the equation with respect to xx, using implicit differentiation.\newlineThe equation is y2+3x3=2yy^2 + 3x^3 = 2y.\newlineDifferentiating both sides with respect to xx gives us:\newlineddx(y2)+ddx(3x3)=ddx(2y)\frac{d}{dx}(y^2) + \frac{d}{dx}(3x^3) = \frac{d}{dx}(2y)\newlineUsing the chain rule for ddx(y2)\frac{d}{dx}(y^2) and the power rule for ddx(3x3)\frac{d}{dx}(3x^3) and ddx(2y)\frac{d}{dx}(2y), we get:\newline2ydydx+9x2=2dydx2y\frac{dy}{dx} + 9x^2 = 2\frac{dy}{dx}
  2. Isolate dydx\frac{dy}{dx}: Now we need to solve for dydx\frac{dy}{dx}. We can rearrange the terms to isolate dydx\frac{dy}{dx} on one side: 2y(dydx)2(dydx)=9x22y\left(\frac{dy}{dx}\right) - 2\left(\frac{dy}{dx}\right) = -9x^2 Factor out dydx\frac{dy}{dx}: (dydx)(2y2)=9x2\left(\frac{dy}{dx}\right)(2y - 2) = -9x^2 Now, divide both sides by (2y2)(2y - 2) to solve for dydx\frac{dy}{dx}: dydx=9x22y2\frac{dy}{dx} = \frac{-9x^2}{2y - 2}
  3. Evaluate at (1,3)(-1,3): We need to evaluate dydx\frac{dy}{dx} at the point (1,3)(-1,3).\newlineSubstitute x=1x = -1 and y=3y = 3 into the expression for dydx\frac{dy}{dx}:\newline(dydx)(1,3)=9(1)2/(2(3)2)\left(\frac{dy}{dx}\right)|_{(-1,3)} = -9(-1)^2 / (2(3) - 2)\newlineCalculate the numerator and the denominator separately:\newlineNumerator: 9(1)2=9-9(-1)^2 = -9\newlineDenominator: 2(3)2=62=42(3) - 2 = 6 - 2 = 4\newlineNow, divide the numerator by the denominator:\newline(dydx)(1,3)=9/4\left(\frac{dy}{dx}\right)|_{(-1,3)} = -9 / 4

More problems from Evaluate a nonlinear function