Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
-2x^(2)+y^(2)+y^(3)+3x=0 then find 
(dy)/(dx) at the point 
(2,1).
Answer: 
(dy)/(dx)|_((2,1))=

If 2x2+y2+y3+3x=0 -2 x^{2}+y^{2}+y^{3}+3 x=0 then find dydx \frac{d y}{d x} at the point (2,1) (2,1) .\newlineAnswer: dydx(2,1)= \left.\frac{d y}{d x}\right|_{(2,1)}=

Full solution

Q. If 2x2+y2+y3+3x=0 -2 x^{2}+y^{2}+y^{3}+3 x=0 then find dydx \frac{d y}{d x} at the point (2,1) (2,1) .\newlineAnswer: dydx(2,1)= \left.\frac{d y}{d x}\right|_{(2,1)}=
  1. Apply Implicit Differentiation: To find the derivative of yy with respect to xx, dydx\frac{dy}{dx}, for the given equation, we need to use implicit differentiation because yy is not isolated on one side of the equation.
  2. Differentiate Each Term: Differentiate both sides of the equation with respect to xx, applying the chain rule where necessary. The equation is 2x2+y2+y3+3x=0-2x^2 + y^2 + y^3 + 3x = 0.\newlineDifferentiating term by term, we get:\newlineddx(2x2)+ddx(y2)+ddx(y3)+ddx(3x)=ddx(0)\frac{d}{dx}(-2x^2) + \frac{d}{dx}(y^2) + \frac{d}{dx}(y^3) + \frac{d}{dx}(3x) = \frac{d}{dx}(0)
  3. Solve for (\frac{dy}{dx}): Differentiate each term:\(\newline\$\frac{d}{dx}(-2x^2) = -4x\)\(\newline\)\(\frac{d}{dx}(y^2) = 2y \cdot (\frac{dy}{dx})\) (using the chain rule)\(\newline\)\(\frac{d}{dx}(y^3) = 3y^2 \cdot (\frac{dy}{dx})\) (using the chain rule)\(\newline\)\(\frac{d}{dx}(3x) = 3\)\(\newline\)\(\frac{d}{dx}(0) = 0\)\(\newline\)So, we have \(-4x + 2y(\frac{dy}{dx}) + 3y^2(\frac{dy}{dx}) + 3 = 0\)
  4. Factor Out \(\frac{dy}{dx}\): Now, we need to solve for \(\frac{dy}{dx}\). Group all the terms involving \(\frac{dy}{dx}\) on one side and the rest on the other side:\(\newline\)\(2y\frac{dy}{dx} + 3y^2\frac{dy}{dx} = 4x - 3\)
  5. Isolate \(\frac{dy}{dx}\): Factor out \(\frac{dy}{dx}\) from the left side:\(\newline\)\(\frac{dy}{dx}(2y + 3y^2) = 4x - 3\)
  6. Substitute Values: Divide both sides by \((2y + 3y^2)\) to isolate \((\frac{dy}{dx}):\)\[(\frac{dy}{dx}) = \frac{(4x - 3)}{(2y + 3y^2)}\]
  7. Calculate \((\frac{dy}{dx}): Now we need to substitute \$x = 2\) and \(y = 1\) into the equation to find the value of \((\frac{dy}{dx})\) at the point \((2,1)\):\(\newline\)\((\frac{dy}{dx})|_{(\(2\),\(1\))} = \frac{(\(4\)(\(2\)) - \(3\))}{(\(2\)(\(1\)) + \(3\)(\(1\))^\(2\))}
  8. Calculate \((\frac{dy}{dx}): Now we need to substitute \$x = 2\) and \(y = 1\) into the equation to find the value of \((\frac{dy}{dx})\) at the point \((2,1)\):
    \((\frac{dy}{dx})|_{(2,1)} = \frac{(4(2) - 3)}{(2(1) + 3(1)^2)}\)Calculate the value:
    \((\frac{dy}{dx})|_{(2,1)} = \frac{(8 - 3)}{(2 + 3)}\)
    \((\frac{dy}{dx})|_{(2,1)} = \frac{5}{5}\)
    \((\frac{dy}{dx})|_{(2,1)} = 1\)

More problems from Evaluate a nonlinear function