Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Consider this matrix transformation:

[[-3,1,-1,-1],[1,1,3,3],[3,3,3,-1],[2,0,-1,-2]]
What is the image of 
[[-5],[1],[1],[5]] under this transformation?

Consider this matrix transformation:\newline[3amp;1amp;1amp;11amp;1amp;3amp;33amp;3amp;3amp;12amp;0amp;1amp;2] \left[\begin{array}{cccc} -3 & 1 & -1 & -1 \\ 1 & 1 & 3 & 3 \\ 3 & 3 & 3 & -1 \\ 2 & 0 & -1 & -2 \end{array}\right] \newlineWhat is the image of [5115] \left[\begin{array}{c}-5 \\ 1 \\ 1 \\ 5\end{array}\right] under this transformation?

Full solution

Q. Consider this matrix transformation:\newline[3111113333312012] \left[\begin{array}{cccc} -3 & 1 & -1 & -1 \\ 1 & 1 & 3 & 3 \\ 3 & 3 & 3 & -1 \\ 2 & 0 & -1 & -2 \end{array}\right] \newlineWhat is the image of [5115] \left[\begin{array}{c}-5 \\ 1 \\ 1 \\ 5\end{array}\right] under this transformation?
  1. Write Matrix and Vector: Write down the matrix and the vector to be transformed.\newlineMatrix AA:\newline[3amp;1amp;1amp;1 1amp;1amp;3amp;3 3amp;3amp;3amp;1 2amp;0amp;1amp;2]\begin{bmatrix}-3 & 1 & -1 & -1 \ 1 & 1 & 3 & 3 \ 3 & 3 & 3 & -1 \ 2 & 0 & -1 & -2\end{bmatrix}\newlineVector vv:\newline[5 1 1 5]\begin{bmatrix}-5 \ 1 \ 1 \ 5\end{bmatrix}\newlineWe will multiply the matrix AA by the vector vv to find the image of vv under the transformation.
  2. Perform Matrix Multiplication: Perform the matrix multiplication.\newlineTo multiply a matrix by a vector, we take the dot product of each row of the matrix with the vector. The result will be a new vector.\newlineFirst entry (row 11 dot v):\newline(3×5)+(1×1)+(1×1)+(1×5)=15+115=10(-3 \times -5) + (1 \times 1) + (-1 \times 1) + (-1 \times 5) = 15 + 1 - 1 - 5 = 10\newlineSecond entry (row 22 dot v):\newline(1×5)+(1×1)+(3×1)+(3×5)=5+1+3+15=14(1 \times -5) + (1 \times 1) + (3 \times 1) + (3 \times 5) = -5 + 1 + 3 + 15 = 14\newlineThird entry (row 33 dot v):\newline(3×5)+(3×1)+(3×1)+(1×5)=15+3+35=14(3 \times -5) + (3 \times 1) + (3 \times 1) + (-1 \times 5) = -15 + 3 + 3 - 5 = -14\newlineFourth entry (row 44 dot v):\newline(2×5)+(0×1)+(1×1)+(2×5)=10+0110=21(2 \times -5) + (0 \times 1) + (-1 \times 1) + (-2 \times 5) = -10 + 0 - 1 - 10 = -21\newlineThe resulting vector is:\newline[10 14 14 21]\begin{bmatrix} 10 \ 14 \ -14 \ -21 \end{bmatrix}

More problems from Interval notation