Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

z=-16 i-92.3
What are the real and imaginary parts of 
z ?
Choose 1 answer:
(A)

{:[Re(z)=-92.3" and "],[Im(z)=-16 i]:}
(B)

{:[Re(z)=-92.3" and "],[Im(z)=-16]:}
(c)

{:[Re(z)=-16 i" and "],[Im(z)=-92.3]:}
(D)

{:[Re(z)=-16" and "],[Im(z)=-92.3]:}

z=16i92.3 z=-16 i-92.3 \newlineWhat are the real and imaginary parts of z z ?\newlineChoose 11 answer:\newline(A)\newlineRe(z)=92.3 and Im(z)=16i \begin{array}{l} \operatorname{Re}(z)=-92.3 \text { and } \\ \operatorname{Im}(z)=-16 i \end{array} \newline(B)\newlineRe(z)=92.3 and Im(z)=16 \begin{array}{l} \operatorname{Re}(z)=-92.3 \text { and } \\ \operatorname{Im}(z)=-16 \end{array} \newline(C)\newlineRe(z)=16i and Im(z)=92.3 \begin{array}{l} \operatorname{Re}(z)=-16 i \text { and } \\ \operatorname{Im}(z)=-92.3 \end{array} \newline(D)\newlineRe(z)=16 and Im(z)=92.3 \begin{array}{l} \operatorname{Re}(z)=-16 \text { and } \\ \operatorname{Im}(z)=-92.3 \end{array}

Full solution

Q. z=16i92.3 z=-16 i-92.3 \newlineWhat are the real and imaginary parts of z z ?\newlineChoose 11 answer:\newline(A)\newlineRe(z)=92.3 and Im(z)=16i \begin{array}{l} \operatorname{Re}(z)=-92.3 \text { and } \\ \operatorname{Im}(z)=-16 i \end{array} \newline(B)\newlineRe(z)=92.3 and Im(z)=16 \begin{array}{l} \operatorname{Re}(z)=-92.3 \text { and } \\ \operatorname{Im}(z)=-16 \end{array} \newline(C)\newlineRe(z)=16i and Im(z)=92.3 \begin{array}{l} \operatorname{Re}(z)=-16 i \text { and } \\ \operatorname{Im}(z)=-92.3 \end{array} \newline(D)\newlineRe(z)=16 and Im(z)=92.3 \begin{array}{l} \operatorname{Re}(z)=-16 \text { and } \\ \operatorname{Im}(z)=-92.3 \end{array}
  1. Identifying real and imaginary parts: Let's identify the real and imaginary parts of the complex number z=16i92.3 z = -16i - 92.3 . A complex number is generally written in the form z=a+bi z = a + bi , where a a is the real part and bi bi is the imaginary part.
  2. Finding the real part: The real part of the complex number zz is the term without the imaginary unit ii, which is 92.3-92.3. So, Re(z)=92.3\text{Re}(z) = -92.3.
  3. Finding the imaginary part: The imaginary part of the complex number zz is the term with the imaginary unit ii, which is 16i-16i. However, when we refer to the imaginary part, we only take the coefficient of ii, which is 16-16. So, Im(z)=16\text{Im}(z) = -16.

More problems from Set-builder notation