Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

z=-24-12.7 i
What are the real and imaginary parts of 
z ?
Choose 1 answer:
(A)

{:[Re(z)=-24" and "],[Im(z)=-12.7]:}
(B)

{:[Re(z)=-24" and "],[Im(z)=-12.7 i]:}
(c)

{:[Re(z)=-12.7" and "],[Im(z)=-24]:}
(D)

{:[Re(z)=-12.7 i" and "],[Im(z)=-24]:}

z=2412.7i z=-24-12.7 i \newlineWhat are the real and imaginary parts of z z ?\newlineChoose 11 answer:\newline(A)\newlineRe(z)=24 and Im(z)=12.7 \begin{array}{l} \operatorname{Re}(z)=-24 \text { and } \\ \operatorname{Im}(z)=-12.7 \end{array} \newline(B)\newlineRe(z)=24 and Im(z)=12.7i \begin{array}{l} \operatorname{Re}(z)=-24 \text { and } \\ \operatorname{Im}(z)=-12.7 i \end{array} \newline(C)\newlineRe(z)=12.7 and Im(z)=24 \begin{array}{l} \operatorname{Re}(z)=-12.7 \text { and } \\ \operatorname{Im}(z)=-24 \end{array} \newline(D)\newlineRe(z)=12.7i and Im(z)=24 \begin{array}{l} \operatorname{Re}(z)=-12.7 i \text { and } \\ \operatorname{Im}(z)=-24 \end{array}

Full solution

Q. z=2412.7i z=-24-12.7 i \newlineWhat are the real and imaginary parts of z z ?\newlineChoose 11 answer:\newline(A)\newlineRe(z)=24 and Im(z)=12.7 \begin{array}{l} \operatorname{Re}(z)=-24 \text { and } \\ \operatorname{Im}(z)=-12.7 \end{array} \newline(B)\newlineRe(z)=24 and Im(z)=12.7i \begin{array}{l} \operatorname{Re}(z)=-24 \text { and } \\ \operatorname{Im}(z)=-12.7 i \end{array} \newline(C)\newlineRe(z)=12.7 and Im(z)=24 \begin{array}{l} \operatorname{Re}(z)=-12.7 \text { and } \\ \operatorname{Im}(z)=-24 \end{array} \newline(D)\newlineRe(z)=12.7i and Im(z)=24 \begin{array}{l} \operatorname{Re}(z)=-12.7 i \text { and } \\ \operatorname{Im}(z)=-24 \end{array}
  1. Identify real part: Identify the real part of the complex number.\newlineThe real part of a complex number is the term without the imaginary unit ii. In the given complex number z=2412.7iz = -24 - 12.7i, the real part is 24-24.
  2. Identify imaginary part: Identify the imaginary part of the complex number.\newlineThe imaginary part of a complex number is the coefficient of the imaginary unit ii. In the given complex number z=2412.7iz = -24 - 12.7i, the imaginary part is the coefficient 12.7-12.7, not 12.7i-12.7i.
  3. Match real and imaginary parts: Match the real and imaginary parts with the given choices.\newlineThe real part is Re(z)=24\text{Re}(z) = -24, and the imaginary part is Im(z)=12.7\text{Im}(z) = -12.7. The correct choice must reflect these values without the imaginary unit ii for the imaginary part.

More problems from Set-builder notation