Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
x^(2)+6x-5=0, what are the values of 
x ?
Choose 1 answer:
(A) 
-3-sqrt14 and 
-3+sqrt14
(B) 
3-sqrt14 and 
3+sqrt14
(c) -1 and -5
(D) 1 and 5

If x2+6x5=0 x^{2}+6 x-5=0 , what are the values of x x ?\newlineChoose 11 answer:\newline(A) 314 -3-\sqrt{14} and 3+14 -3+\sqrt{14} \newline(B) 314 3-\sqrt{14} and 3+14 3+\sqrt{14} \newline(C) 1-1 and 5-5\newline(D) 11 and 55

Full solution

Q. If x2+6x5=0 x^{2}+6 x-5=0 , what are the values of x x ?\newlineChoose 11 answer:\newline(A) 314 -3-\sqrt{14} and 3+14 -3+\sqrt{14} \newline(B) 314 3-\sqrt{14} and 3+14 3+\sqrt{14} \newline(C) 1-1 and 5-5\newline(D) 11 and 55
  1. Identify equation type: Identify the type of equation.\newlineThe given equation x2+6x5=0x^2 + 6x - 5 = 0 is a quadratic equation in the standard form ax2+bx+c=0ax^2 + bx + c = 0, where a=1a = 1, b=6b = 6, and c=5c = -5.
  2. Apply quadratic formula: Apply the quadratic formula to find the values of x.\newlineThe quadratic formula is x=b±b24ac2ax = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{{2a}}. For our equation, a=1a = 1, b=6b = 6, and c=5c = -5.
  3. Calculate discriminant: Calculate the discriminant b24acb^2 - 4ac.\newlineDiscriminant = b24ac=(6)24(1)(5)=36+20=56b^2 - 4ac = (6)^2 - 4(1)(-5) = 36 + 20 = 56.
  4. Calculate possible values for x: Calculate the two possible values for x using the quadratic formula.\newlinex=6±56(21)x = \frac{{-6 \pm \sqrt{56}}}{{(2 \cdot 1)}}\newlinex=6±4142x = \frac{{-6 \pm \sqrt{4 \cdot 14}}}{{2}}\newlinex=6±2142x = \frac{{-6 \pm 2\sqrt{14}}}{{2}}\newlinex=3±14x = -3 \pm \sqrt{14}
  5. Write down solutions for x: Write down the two solutions for x.\newlineThe two solutions are:\newlinex = 314-3 - \sqrt{14}\newlinex = 3+14-3 + \sqrt{14}

More problems from Unions and intersections of sets