Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Consider this matrix transformation:

[[-1,-2,-3],[2,-3,-1],[3,3,0]]
What is the image of 
[[-2],[-3],[4]] under this transformation?

Consider this matrix transformation:\newline[1amp;2amp;32amp;3amp;13amp;3amp;0] \left[\begin{array}{ccc} -1 & -2 & -3 \\ 2 & -3 & -1 \\ 3 & 3 & 0 \end{array}\right] \newlineWhat is the image of [234] \left[\begin{array}{c}-2 \\ -3 \\ 4\end{array}\right] under this transformation?

Full solution

Q. Consider this matrix transformation:\newline[123231330] \left[\begin{array}{ccc} -1 & -2 & -3 \\ 2 & -3 & -1 \\ 3 & 3 & 0 \end{array}\right] \newlineWhat is the image of [234] \left[\begin{array}{c}-2 \\ -3 \\ 4\end{array}\right] under this transformation?
  1. Write Matrix and Vector: Write down the matrix and the vector to be transformed.\newlineMatrix A=[1amp;2amp;3 2amp;3amp;1 3amp;3amp;0]A = \begin{bmatrix} -1 & -2 & -3 \ 2 & -3 & -1 \ 3 & 3 & 0 \end{bmatrix}\newlineVector v=[2 3 4]v = \begin{bmatrix} -2 \ -3 \ 4 \end{bmatrix}
  2. Perform Matrix Multiplication: Perform matrix multiplication to find the image of the vector under the transformation.\newlineTo multiply a matrix by a vector, we take the dot product of each row of the matrix with the vector. The result will be a new vector.
  3. Calculate First Component: Calculate the first component of the resulting vector.\newlineFirst row of A: [1,2,3][-1, -2, -3]\newlineDot product with vv: (1)(2)+(2)(3)+(3)(4)=2+612=4(-1)\cdot(-2) + (-2)\cdot(-3) + (-3)\cdot(4) = 2 + 6 - 12 = -4
  4. Calculate Second Component: Calculate the second component of the resulting vector.\newlineSecond row of AA: [2,3,1][2, -3, -1]\newlineDot product with vv: (2)(2)+(3)(3)+(1)(4)=4+94=1(2)\cdot(-2) + (-3)\cdot(-3) + (-1)\cdot(4) = -4 + 9 - 4 = 1
  5. Calculate Third Component: Calculate the third component of the resulting vector.\newlineThird row of A: [3,3,0][3, 3, 0]\newlineDot product with vv: (3)(2)+(3)(3)+(0)(4)=69+0=15(3)\cdot(-2) + (3)\cdot(-3) + (0)\cdot(4) = -6 - 9 + 0 = -15
  6. Combine Results: Combine the results from steps 33, 44, and 55 to form the image vector.\newlineThe resulting image vector is [[4],[1],[15]][[-4],[1],[-15]].

More problems from Interval notation