Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
Home
Math Problems
Algebra 2
Simplify variable expressions using properties
−
6
-6
−
6
\cdot f(
3
3
3
) -
6
6
6
\cdot g(
−
1
-1
−
1
) =
Get tutor help
{
−
3
-3
−
3
n
−
7
-7
−
7
+(
−
6
-6
−
6
n)+
1
1
1
}
Get tutor help
{
−
3
-3
−
3
n
−
7
-7
−
7
+(
−
6
-6
−
6
n)+
1
1
1
}
Get tutor help
{
−
3
-3
−
3
n
−
7
-7
−
7
+(
−
6
-6
−
6
n)+
1
1
1
}
Get tutor help
Choose the correct symbol to compare the expressions. Do not multiply.
\newline
2
?
2
×
1
4
2 ? 2 \times \frac{1}{4}
2
?
2
×
4
1
\newline
Choices:
\newline
(A)
>
>
>
\newline
(B)
<
<
<
\newline
(C)
=
=
=
Get tutor help
Which sign makes the statement true?
\newline
1
7
+
3
7
\frac{1}{7} + \frac{3}{7}
7
1
+
7
3
?
6
7
−
3
7
\frac{6}{7} - \frac{3}{7}
7
6
−
7
3
\newline
Choices:
\newline
(A) >
\newline
(B) <
\newline
(C) =
Get tutor help
Which sign makes the statement true?
\newline
1
7
+
4
7
\frac{1}{7} + \frac{4}{7}
7
1
+
7
4
?
\text{?}
?
5
7
+
1
7
\frac{5}{7} + \frac{1}{7}
7
5
+
7
1
\newline
Choices:
\newline
(A)
>
>
>
\newline
(B)
<
<
<
\newline
(C)
=
=
=
Get tutor help
Which sign makes the statement true?
\newline
6
7
−
2
7
\frac{6}{7} - \frac{2}{7}
7
6
−
7
2
?
4
7
−
1
7
\frac{4}{7} - \frac{1}{7}
7
4
−
7
1
\newline
Choices:
\newline
(A)
>
>
>
\newline
(B)
<
<
<
\newline
(C)
=
=
=
Get tutor help
Evaluate the expression.
\newline
(
4
5
)
+
(
2
5
)
×
(
1
2
)
(\frac{4}{5})+(\frac{2}{5})\times(\frac{1}{2})
(
5
4
)
+
(
5
2
)
×
(
2
1
)
\newline
Write your answer as a fraction
\newline
◻
Get tutor help
Find the value of
n
n
n
.
\newline
n
+
7
=
6
×
9
n+7=6\times 9
n
+
7
=
6
×
9
Get tutor help
Which of the following expressions has a coefficient of
10
10
10
and a constant of
5
5
5
?
\newline
10
−
5
10
x
+
5
10
+
5
10
+
5
x
\begin{array}{l} 10-5 \\ 10 x+5 \\ 10+5 \\ 10+5 x \\ \end{array}
10
−
5
10
x
+
5
10
+
5
10
+
5
x
Get tutor help
Simplify the following:
\newline
2
x
+
2
−
4
2
x
+
1
\frac{2}{x+2}-\frac{4}{2x+1}
x
+
2
2
−
2
x
+
1
4
Get tutor help
Simplify the expression:
\newline
−
6
+
(
f
+
1
)
=
-6 + (f + 1) =
−
6
+
(
f
+
1
)
=
_____
Get tutor help
Simplify the expression:
\newline
9
+
(
z
+
−
7
)
=
9 + (z + -7) =
9
+
(
z
+
−
7
)
=
_____
Get tutor help
Simplify the expression:
\newline
3
(
3
p
)
=
3(3p) =
3
(
3
p
)
=
_____
Get tutor help
Simplify the expression:
\newline
(
−
4
+
j
)
+
5
=
(-4 + j) + 5 =
(
−
4
+
j
)
+
5
=
_____
Get tutor help
Simplify the expression:
\newline
(
3
+
z
)
+
−
9
=
(3 + z) + -9 =
(
3
+
z
)
+
−
9
=
_____
Get tutor help
Simplify the expression:
\newline
−
6
+
(
4
+
s
)
=
-6 + (4 + s) =
−
6
+
(
4
+
s
)
=
_____
Get tutor help
Simplify the expression:
\newline
(
7
p
)
(
−
3
)
=
(7p)(-3) =
(
7
p
)
(
−
3
)
=
_____
Get tutor help
Simplify the expression:
\newline
3
+
(
q
+
−
8
)
=
3 + (q + -8) =
3
+
(
q
+
−
8
)
=
_____
Get tutor help
Simplify the expression:
\newline
(
q
+
8
)
+
−
4
=
(q + 8) + -4 =
(
q
+
8
)
+
−
4
=
_____
Get tutor help
Simplify the expression:
\newline
6
+
(
–
2
+
u
)
=
6 + (\text{–}2 + u) =
6
+
(
–
2
+
u
)
=
_____
Get tutor help
Simplify the expression:
\newline
−
2
+
(
2
+
m
)
=
-2 + (2 + m) =
−
2
+
(
2
+
m
)
=
_____
Get tutor help
Simplify the expression:
\newline
3
+
(
–
3
+
p
)
=
3 + (\text{–}3 + p) =
3
+
(
–
3
+
p
)
=
_____
Get tutor help
Simplify the expression:
\newline
(
−
2
r
)
(
−
2
)
=
(-2r)(-2) =
(
−
2
r
)
(
−
2
)
=
_____
Get tutor help
Simplify the expression:
\newline
−
4
+
(
−
4
+
f
)
=
-4 + (-4 + f) =
−
4
+
(
−
4
+
f
)
=
_____
Get tutor help
Simplify the expression:
\newline
8
+
(
q
+
−
1
)
=
8 + (q + -1) =
8
+
(
q
+
−
1
)
=
_____
Get tutor help
Simplify the expression:
\newline
(
5
+
z
)
+
−
2
=
(5 + z) + -2 =
(
5
+
z
)
+
−
2
=
_____
Get tutor help
Simplify the expression:
\newline
(
6
k
)
(
−
4
)
=
(6k)(-4) =
(
6
k
)
(
−
4
)
=
_____
Get tutor help
Simplify the expression:
\newline
−
7
(
−
4
r
)
=
-7(-4r) =
−
7
(
−
4
r
)
=
_____
Get tutor help
Simplify the expression:
\newline
(
−
5
z
)
(
−
3
)
=
(-5z)(-3) =
(
−
5
z
)
(
−
3
)
=
_____
Get tutor help
Simplify the expression:
\newline
(
s
+
3
)
+
(
−
6
)
=
_
_
_
_
_
(s + 3) + (-6) = \_\_\_\_\_
(
s
+
3
)
+
(
−
6
)
=
_____
Get tutor help
Simplify the expression:
\newline
−
2
(
−
2
d
)
=
-2(-2d) =
−
2
(
−
2
d
)
=
_____
Get tutor help
Simplify the expression:
\newline
−
1
+
(
n
+
1
)
=
-1 + (n + 1) =
−
1
+
(
n
+
1
)
=
_____
Get tutor help
Simplify the expression:
\newline
3
(
−
7
d
)
=
3(-7d) =
3
(
−
7
d
)
=
_____
Get tutor help
Simplify the expression:
\newline
(
2
+
c
)
+
−
2
=
(2 + c) + -2 =
(
2
+
c
)
+
−
2
=
_____
Get tutor help
Simplify the expression:
\newline
(
−
3
+
b
)
+
−
5
=
(-3 + b) + -5 =
(
−
3
+
b
)
+
−
5
=
_____
Get tutor help
Simplify the expression:
\newline
−
1
+
(
2
+
w
)
=
-1 + (2 + w) =
−
1
+
(
2
+
w
)
=
_____
Get tutor help
Simplify the expression:
\newline
−
5
+
(
b
+
2
)
=
-5 + (b + 2) =
−
5
+
(
b
+
2
)
=
_____
Get tutor help
Simplify the expression:
\newline
(
1
+
d
)
+
1
=
(1 + d) + 1 =
(
1
+
d
)
+
1
=
_____
Get tutor help
Let
g
(
x
)
=
1
8
x
3
+
1
2
x
−
1
4
g(x)=\frac{1}{8} x^{3}+\frac{1}{2} x-\frac{1}{4}
g
(
x
)
=
8
1
x
3
+
2
1
x
−
4
1
and let
h
h
h
be the inverse function of
g
g
g
. Notice that
g
(
2
)
=
7
4
g(2)=\frac{7}{4}
g
(
2
)
=
4
7
.
\newline
h
′
(
7
4
)
=
h^{\prime}\left(\frac{7}{4}\right)=
h
′
(
4
7
)
=
Get tutor help
(
2
sin
y
+
1
)
d
y
d
x
=
4
and
y
(
0
)
=
π
/
2.
\begin{array}{l} (2 \sin y+1) \frac{d y}{d x}=4 \text { and } \\ y(0)=\pi / 2 . \end{array}
(
2
sin
y
+
1
)
d
x
d
y
=
4
and
y
(
0
)
=
π
/2.
\newline
What is
x
x
x
when
y
=
π
y=\pi
y
=
π
?
\newline
x
=
x=
x
=
Get tutor help
d
y
d
x
=
3
y
\frac{d y}{d x}=3 y
d
x
d
y
=
3
y
and
y
(
0
)
=
3
y(0)=3
y
(
0
)
=
3
.
\newline
y
(
ln
2
)
=
y(\ln 2)=
y
(
ln
2
)
=
Get tutor help
d
y
d
x
=
2
y
2
\frac{d y}{d x}=2 y^{2}
d
x
d
y
=
2
y
2
and
y
(
1
)
=
−
1
y(1)=-1
y
(
1
)
=
−
1
.
\newline
y
(
3
)
=
y(3)=
y
(
3
)
=
Get tutor help
Let
y
=
cos
(
x
)
x
3
y=\cos (x) x^{3}
y
=
cos
(
x
)
x
3
.
\newline
d
y
d
x
=
\frac{d y}{d x}=
d
x
d
y
=
Get tutor help
d
d
x
(
x
3
sin
(
x
)
)
=
\frac{d}{d x}\left(x^{3} \sin (x)\right)=
d
x
d
(
x
3
sin
(
x
)
)
=
Get tutor help
Expand and simplify
−
4
n
+
5
{
3
(
−
2
n
+
7
)
+
8
(
n
−
3
)
}
-4 n+5\{3(-2 n+7)+8(n-3)\}
−
4
n
+
5
{
3
(
−
2
n
+
7
)
+
8
(
n
−
3
)}
Get tutor help
Solve for
x
x
x
.
\newline
x
−
2
x
2
−
18
=
−
3
x-\sqrt{2 x^{2}-18}=-3
x
−
2
x
2
−
18
=
−
3
Get tutor help
(
x
)
(
x
4
3
)
=
(x)\left(\sqrt[3]{x^{4}}\right)=
(
x
)
(
3
x
4
)
=
Get tutor help
Convert
24
24
24
celsius to faranheit.
Get tutor help
1
2
3
...
6
Next