Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for x.
x-sqrt(2x^(2)-18)=-3

Solve for xx.\newlinex2x218=3 x-\sqrt{2 x^{2}-18}=-3

Full solution

Q. Solve for xx.\newlinex2x218=3 x-\sqrt{2 x^{2}-18}=-3
  1. Isolate square root term: First, isolate the square root term by adding 2x218\sqrt{2x^2 - 18} to both sides of the equation.\newlinex2x218+2x218=3+2x218x - \sqrt{2x^2 - 18} + \sqrt{2x^2 - 18} = -3 + \sqrt{2x^2 - 18}\newlineThis simplifies to:\newlinex=3+2x218x = -3 + \sqrt{2x^2 - 18}
  2. Square both sides: Next, square both sides of the equation to eliminate the square root.\newline(3+2x218)2=x2(-3 + \sqrt{2x^2 - 18})^2 = x^2\newlineExpanding the left side, we get:\newline(3)2+2(3)2x218+(2x218)2=x2(-3)^2 + 2(-3)\sqrt{2x^2 - 18} + (\sqrt{2x^2 - 18})^2 = x^2\newline962x218+2x218=x29 - 6\sqrt{2x^2 - 18} + 2x^2 - 18 = x^2
  3. Simplify equation: Simplify the equation by combining like terms and moving all terms to one side.\newline962x218+2x218x2=09 - 6\sqrt{2x^2 - 18} + 2x^2 - 18 - x^2 = 0\newline2x2x262x2189=02x^2 - x^2 - 6\sqrt{2x^2 - 18} - 9 = 0\newlinex262x2189=0x^2 - 6\sqrt{2x^2 - 18} - 9 = 0
  4. Isolate square root term again: Now, we have a new equation with a square root term. To isolate the square root term again, add 99 to both sides and then add 62x2186\sqrt{2x^2 - 18} to both sides.\newlinex29=62x218x^2 - 9 = 6\sqrt{2x^2 - 18}
  5. Square both sides again: Square both sides of the equation again to eliminate the square root. \newline(x29)2=(62x218)2(x^2 - 9)^2 = (6\sqrt{2x^2 - 18})^2\newlineExpanding the left side, we get:\newlinex418x2+81=36(2x218)x^4 - 18x^2 + 81 = 36(2x^2 - 18)\newlinex418x2+81=72x2648x^4 - 18x^2 + 81 = 72x^2 - 648
  6. Combine like terms: Combine like terms and move all terms to one side to form a quartic equation.\newlinex418x272x2+81+648=0x^4 - 18x^2 - 72x^2 + 81 + 648 = 0\newlinex490x2+729=0x^4 - 90x^2 + 729 = 0
  7. Factor quartic equation: Factor the quartic equation.\newline(x281)(x29)=0(x^2 - 81)(x^2 - 9) = 0\newlineThis gives us two factors: x281x^2 - 81 and x29x^2 - 9.
  8. Solve for x: Set each factor equal to zero and solve for x.\newlinex281=0x^2 - 81 = 0 and x29=0x^2 - 9 = 0\newlinex2=81x^2 = 81 and x2=9x^2 = 9\newlinex=±9x = \pm9 and x=±3x = \pm3
  9. Check solutions: Check each solution in the original equation to ensure it does not introduce any extraneous solutions.\newlineFor x=9x = 9:\newline92(9)218=39 - \sqrt{2(9)^2 - 18} = -3\newline916218=39 - \sqrt{162 - 18} = -3\newline9144=39 - \sqrt{144} = -3\newline912=39 - 12 = -3\newline3=3-3 = -3 (Valid solution)

More problems from Simplify variable expressions using properties