Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
g(x)=(1)/(8)x^(3)+(1)/(2)x-(1)/(4) and let 
h be the inverse function of 
g. Notice that 
g(2)=(7)/(4).

h^(')((7)/(4))=

Let g(x)=18x3+12x14 g(x)=\frac{1}{8} x^{3}+\frac{1}{2} x-\frac{1}{4} and let h h be the inverse function of g g . Notice that g(2)=74 g(2)=\frac{7}{4} .\newlineh(74)= h^{\prime}\left(\frac{7}{4}\right)=

Full solution

Q. Let g(x)=18x3+12x14 g(x)=\frac{1}{8} x^{3}+\frac{1}{2} x-\frac{1}{4} and let h h be the inverse function of g g . Notice that g(2)=74 g(2)=\frac{7}{4} .\newlineh(74)= h^{\prime}\left(\frac{7}{4}\right)=
  1. Find g(x)g'(x): First, we need to find the derivative of g(x)g(x), which is g(x)g'(x). So let's differentiate g(x)=18x3+12x14g(x) = \frac{1}{8}x^3 + \frac{1}{2}x - \frac{1}{4}.
  2. Calculate g(2)g'(2): g(x)=38x2+12g'(x) = \frac{3}{8}x^2 + \frac{1}{2}.
  3. Use formula for inverse function derivative: Now, we know that g(2)=74g(2) = \frac{7}{4}, so we need to find g(2)g'(2) to use in the formula for the derivative of the inverse function.
  4. Find g1(74):g^{-1}(\frac{7}{4}): g(2)=(38)(2)2+12=(38)(4)+12=3+12=3.5g'(2) = (\frac{3}{8})(2)^2 + \frac{1}{2} = (\frac{3}{8})(4) + \frac{1}{2} = 3 + \frac{1}{2} = 3.5 or 72.\frac{7}{2}.
  5. Plug in g(2)g'(2) into formula: The formula for the derivative of the inverse function at a point yy is 1g(g1(y))\frac{1}{g'(g^{-1}(y))}. We have y=74y = \frac{7}{4} and we need to find g1(74)g^{-1}(\frac{7}{4}), but we already know that g(2)=74g(2) = \frac{7}{4}, so g1(74)=2g^{-1}(\frac{7}{4}) = 2.
  6. Simplify expression: Now we plug in g(2)g'(2) into the formula: h(74)=1g(2)=1(72)h^{'}\left(\frac{7}{4}\right) = \frac{1}{g'(2)} = \frac{1}{\left(\frac{7}{2}\right)}.
  7. Simplify expression: Now we plug in g(2)g'(2) into the formula: h(74)=1g(2)=1(72)h^{'}\left(\frac{7}{4}\right) = \frac{1}{g'(2)} = \frac{1}{\left(\frac{7}{2}\right)}.Simplify the expression: h(74)=1(72)=27h^{'}\left(\frac{7}{4}\right) = \frac{1}{\left(\frac{7}{2}\right)} = \frac{2}{7}.