Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Let
y
=
cos
(
x
)
x
3
y=\cos (x) x^{3}
y
=
cos
(
x
)
x
3
.
\newline
d
y
d
x
=
\frac{d y}{d x}=
d
x
d
y
=
View step-by-step help
Home
Math Problems
Algebra 2
Simplify variable expressions using properties
Full solution
Q.
Let
y
=
cos
(
x
)
x
3
y=\cos (x) x^{3}
y
=
cos
(
x
)
x
3
.
\newline
d
y
d
x
=
\frac{d y}{d x}=
d
x
d
y
=
Apply Product Rule:
Use the product rule for differentiation, which states that
d
d
x
[
u
∗
v
]
=
u
′
v
+
u
v
′
\frac{d}{dx}[u*v] = u'v + uv'
d
x
d
[
u
∗
v
]
=
u
′
v
+
u
v
′
, where
u
=
cos
(
x
)
u = \cos(x)
u
=
cos
(
x
)
and
v
=
x
3
v = x^{3}
v
=
x
3
.
Differentiate
u
=
cos
(
x
)
u = \cos(x)
u
=
cos
(
x
)
:
First, differentiate
u
=
cos
(
x
)
u = \cos(x)
u
=
cos
(
x
)
with respect to
x
x
x
to get
u
′
=
−
sin
(
x
)
u' = -\sin(x)
u
′
=
−
sin
(
x
)
.
Differentiate
v
=
x
3
v = x^{3}
v
=
x
3
:
Then, differentiate
v
=
x
3
v = x^{3}
v
=
x
3
with respect to
x
x
x
to get
v
′
=
3
x
2
v' = 3x^{2}
v
′
=
3
x
2
.
Use Product Rule Formula:
Now apply the product rule:
(
d
y
d
x
)
=
u
′
v
+
u
v
′
(\frac{dy}{dx}) = u'v + uv'
(
d
x
d
y
)
=
u
′
v
+
u
v
′
.
Substitute into Formula:
Substitute
u
′
u'
u
′
,
u
u
u
,
v
′
v'
v
′
, and
v
v
v
into the formula:
d
y
d
x
=
(
−
sin
(
x
)
)
(
x
3
)
+
(
cos
(
x
)
)
(
3
x
2
)
\frac{dy}{dx} = (-\sin(x))(x^{3}) + (\cos(x))(3x^{2})
d
x
d
y
=
(
−
sin
(
x
))
(
x
3
)
+
(
cos
(
x
))
(
3
x
2
)
.
Simplify Expression:
Simplify the expression:
d
y
d
x
=
−
x
3
sin
(
x
)
+
3
x
2
cos
(
x
)
\frac{dy}{dx} = -x^{3}\sin(x) + 3x^{2}\cos(x)
d
x
d
y
=
−
x
3
sin
(
x
)
+
3
x
2
cos
(
x
)
.
More problems from Simplify variable expressions using properties
Question
Write an expression to represent:
\newline
6
6
6
times the difference of
5
5
5
and
x
x
x
.
Get tutor help
Posted 10 months ago
Question
(
10
−
22
i
)
+
(
22
i
)
=
(10-22 i)+(22 i)=
(
10
−
22
i
)
+
(
22
i
)
=
\newline
Express your answer in the form
(
a
+
b
i
)
(a+b i)
(
a
+
bi
)
.
Get tutor help
Posted 10 months ago
Question
Reduce to simplest form.
\newline
8
3
+
(
−
9
4
)
=
\frac{8}{3}+\left(-\frac{9}{4}\right)=
3
8
+
(
−
4
9
)
=
Get tutor help
Posted 9 months ago
Question
Reduce to simplest form.
\newline
−
1
2
−
3
5
=
-\frac{1}{2}-\frac{3}{5}=
−
2
1
−
5
3
=
Get tutor help
Posted 9 months ago
Question
Reduce to simplest form.
\newline
−
1
2
−
2
5
=
-\frac{1}{2}-\frac{2}{5}=
−
2
1
−
5
2
=
Get tutor help
Posted 9 months ago
Question
Reduce to simplest form.
\newline
−
5
12
−
(
−
9
3
)
=
-\frac{5}{12}-\left(-\frac{9}{3}\right)=
−
12
5
−
(
−
3
9
)
=
Get tutor help
Posted 9 months ago
Question
Reduce to simplest form.
\newline
−
3
2
−
3
8
=
-\frac{3}{2}-\frac{3}{8}=
−
2
3
−
8
3
=
Get tutor help
Posted 9 months ago
Question
Reduce to simplest form.
\newline
−
5
8
−
(
−
4
3
)
=
-\frac{5}{8}-\left(-\frac{4}{3}\right)=
−
8
5
−
(
−
3
4
)
=
Get tutor help
Posted 9 months ago
Question
Reduce to simplest form.
\newline
−
7
12
+
3
8
=
-\frac{7}{12}+\frac{3}{8}=
−
12
7
+
8
3
=
Get tutor help
Posted 9 months ago
Question
Evaluate
1
+
(
−
2
3
)
−
(
−
m
)
1+\left(-\frac{2}{3}\right)-(-m)
1
+
(
−
3
2
)
−
(
−
m
)
where
m
=
9
2
m=\frac{9}{2}
m
=
2
9
.
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant