Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
y=cos(x)x^(3).

(dy)/(dx)=

Let y=cos(x)x3 y=\cos (x) x^{3} .\newlinedydx= \frac{d y}{d x}=

Full solution

Q. Let y=cos(x)x3 y=\cos (x) x^{3} .\newlinedydx= \frac{d y}{d x}=
  1. Apply Product Rule: Use the product rule for differentiation, which states that ddx[uv]=uv+uv\frac{d}{dx}[u*v] = u'v + uv', where u=cos(x)u = \cos(x) and v=x3v = x^{3}.
  2. Differentiate u=cos(x)u = \cos(x): First, differentiate u=cos(x)u = \cos(x) with respect to xx to get u=sin(x)u' = -\sin(x).
  3. Differentiate v=x3v = x^{3}: Then, differentiate v=x3v = x^{3} with respect to xx to get v=3x2v' = 3x^{2}.
  4. Use Product Rule Formula: Now apply the product rule: (dydx)=uv+uv(\frac{dy}{dx}) = u'v + uv'.
  5. Substitute into Formula: Substitute uu', uu, vv', and vv into the formula: dydx=(sin(x))(x3)+(cos(x))(3x2)\frac{dy}{dx} = (-\sin(x))(x^{3}) + (\cos(x))(3x^{2}).
  6. Simplify Expression: Simplify the expression: dydx=x3sin(x)+3x2cos(x)\frac{dy}{dx} = -x^{3}\sin(x) + 3x^{2}\cos(x).