Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Simplify the expression:
\newline
(
7
p
)
(
−
3
)
=
(7p)(-3) =
(
7
p
)
(
−
3
)
=
_____
View step-by-step help
Home
Math Problems
Algebra 2
Simplify variable expressions using properties
Full solution
Q.
Simplify the expression:
\newline
(
7
p
)
(
−
3
)
=
(7p)(-3) =
(
7
p
)
(
−
3
)
=
_____
Multiply Coefficient by
−
3
-3
−
3
:
First, we multiply the coefficient
7
7
7
by
−
3
-3
−
3
. So,
7
7
7
times
−
3
-3
−
3
equals
−
21
-21
−
21
.
Attach Variable:
Now, we attach the variable
p
p
p
to our result from the previous step. So,
–
21
×
p
–21 \times p
–21
×
p
is
–
21
p
–21p
–21
p
.
Check for Errors:
We check for any possible math errors, but everything looks good. The expression is simplified.
More problems from Simplify variable expressions using properties
Question
Combine the like terms to create an equivalent expression:
\newline
2
s
+
(
−
4
s
)
=
0
2s+(-4s)=\boxed{\phantom{0}}
2
s
+
(
−
4
s
)
=
0
Get tutor help
Posted 1 year ago
Question
Combine the like terms to create an equivalent expression:
\newline
−
4
p
+
(
−
6
p
)
=
□
-4p+(-6p)=\square
−
4
p
+
(
−
6
p
)
=
□
Get tutor help
Posted 1 year ago
Question
Combine the like terms to create an equivalent expression:
\newline
4
z
−
(
−
3
z
)
=
□
4z-(-3z)=\square
4
z
−
(
−
3
z
)
=
□
Get tutor help
Posted 1 year ago
Question
Combine the like terms to create an equivalent expression:
\newline
r
+
(
−
5
r
)
=
0
r+(-5r)=\boxed{\phantom{0}}
r
+
(
−
5
r
)
=
0
Get tutor help
Posted 1 year ago
Question
Combine the like terms to create an equivalent expression:
\newline
−
4
p
+
(
−
2
)
+
2
p
+
3
=
-4p+(-2)+2p+3=
−
4
p
+
(
−
2
)
+
2
p
+
3
=
Get tutor help
Posted 1 year ago
Question
Rewrite the expression in the form
k
⋅
z
n
k \cdot z^{n}
k
⋅
z
n
.
\newline
Write the exponent as an integer, fraction, or an exact decimal (not a mixed number).
\newline
3
z
4
⋅
3
z
3
4
=
3 \sqrt[4]{z} \cdot 3 z^{\frac{3}{4}}=
3
4
z
⋅
3
z
4
3
=
Get tutor help
Posted 1 year ago
Question
Let
y
=
3
x
y=3^{x}
y
=
3
x
.
\newline
Find
d
2
y
d
x
2
\frac{d^{2} y}{d x^{2}}
d
x
2
d
2
y
\newline
d
2
y
d
x
2
=
\frac{d^{2} y}{d x^{2}}=
d
x
2
d
2
y
=
Get tutor help
Posted 1 year ago
Question
Let
y
=
4
x
2
+
3
x
2
x
−
7
y=\frac{4 x^{2}+3 x}{2 x-7}
y
=
2
x
−
7
4
x
2
+
3
x
.
\newline
d
y
d
x
=
\frac{d y}{d x}=
d
x
d
y
=
Get tutor help
Posted 1 year ago
Question
d
d
x
(
e
x
cos
(
x
)
)
=
\frac{d}{d x}\left(\frac{e^{x}}{\cos (x)}\right)=
d
x
d
(
c
o
s
(
x
)
e
x
)
=
Get tutor help
Posted 10 months ago
Question
Let
f
(
x
)
=
1
x
2
f(x)=\frac{1}{x^{2}}
f
(
x
)
=
x
2
1
.
\newline
f
′
(
5
)
=
f^{\prime}(5)=
f
′
(
5
)
=
Get tutor help
Posted 1 year ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant