Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
Home
Math Problems
Algebra 1
Divide polynomials by monomials
Divide. If there is a remainder, include it as a simplified fraction.
(
4
z
3
+
10
z
2
−
24
z
)
÷
(
z
+
4
)
(4z^3 + 10z^2 - 24z) \div (z + 4)
(
4
z
3
+
10
z
2
−
24
z
)
÷
(
z
+
4
)
Get tutor help
Convert the fraction below into a decimal
\newline
2
9
\frac{2}{9}
9
2
\newline
Edit the repeating and non-repeating part of the decimal:
\newline
0.
□
□
‾
0.\square\overline{\square}
0.
□
□
Get tutor help
Convert the fraction below into a decimal
\newline
1
9
\frac{1}{9}
9
1
\newline
Edit the repeating and non-repeating part of the decimal:
\newline
0.
□
□
‾
0.\square\overline{\square}
0.
□
□
Get tutor help
Convert the fraction below into a decimal
\newline
8
9
\frac{8}{9}
9
8
\newline
Edit the repeating and non-repeating part of the decimal:
\newline
0.
□
□
‾
0.\square\overline{\square}
0.
□
□
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
5
y
2
+
6
y
)
÷
y
(5y^2 + 6y) \div y
(
5
y
2
+
6
y
)
÷
y
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
−
6
x
3
+
3
x
2
)
÷
3
x
2
(-6x^3 + 3x^2) \div 3x^2
(
−
6
x
3
+
3
x
2
)
÷
3
x
2
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
3
a
2
−
27
a
)
÷
3
a
(3a^2 - 27a) \div 3a
(
3
a
2
−
27
a
)
÷
3
a
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
9
w
2
+
w
)
÷
w
(9w^2 + w) \div w
(
9
w
2
+
w
)
÷
w
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
4
w
3
+
10
w
2
)
÷
2
w
2
(4w^3 + 10w^2) \div 2w^2
(
4
w
3
+
10
w
2
)
÷
2
w
2
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
18
j
2
+
8
j
)
÷
2
j
(18j^2 + 8j) \div 2j
(
18
j
2
+
8
j
)
÷
2
j
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
−
3
u
2
−
8
u
)
÷
u
(-3u^2 - 8u) \div u
(
−
3
u
2
−
8
u
)
÷
u
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
−
16
z
2
−
14
z
)
÷
2
z
(-16z^2 - 14z) \div 2z
(
−
16
z
2
−
14
z
)
÷
2
z
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
2
y
3
−
4
y
2
)
÷
y
(2y^3 - 4y^2) \div y
(
2
y
3
−
4
y
2
)
÷
y
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
−
30
y
3
+
35
y
2
)
÷
5
y
2
(-30y^3 + 35y^2) \div 5y^2
(
−
30
y
3
+
35
y
2
)
÷
5
y
2
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
7
g
2
−
5
g
)
÷
g
(7g^2 - 5g) \div g
(
7
g
2
−
5
g
)
÷
g
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
12
s
2
−
42
s
)
÷
6
s
(12s^2 - 42s) \div 6s
(
12
s
2
−
42
s
)
÷
6
s
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
24
b
2
+
8
b
)
÷
4
b
(24b^2 + 8b) \div 4b
(
24
b
2
+
8
b
)
÷
4
b
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
4
z
3
+
6
z
2
)
÷
z
2
(4z^3 + 6z^2) \div z^2
(
4
z
3
+
6
z
2
)
÷
z
2
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
−
9
h
3
+
21
h
2
+
15
h
)
÷
3
h
(-9h^3 + 21h^2 + 15h) \div 3h
(
−
9
h
3
+
21
h
2
+
15
h
)
÷
3
h
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
−
a
3
−
4
a
2
)
÷
a
2
(-a^3 - 4a^2) \div a^2
(
−
a
3
−
4
a
2
)
÷
a
2
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
−
18
k
2
+
18
k
)
÷
2
k
(-18k^2 + 18k) \div 2k
(
−
18
k
2
+
18
k
)
÷
2
k
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
45
t
2
+
15
t
)
÷
5
t
(45t^2 + 15t) \div 5t
(
45
t
2
+
15
t
)
÷
5
t
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
25
b
3
−
45
b
2
)
÷
5
b
(25b^3 - 45b^2) \div 5b
(
25
b
3
−
45
b
2
)
÷
5
b
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
−
24
a
3
+
16
a
2
)
÷
4
a
(-24a^3 + 16a^2) \div 4a
(
−
24
a
3
+
16
a
2
)
÷
4
a
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
6
n
2
+
15
n
)
÷
3
n
(6n^2 + 15n) \div 3n
(
6
n
2
+
15
n
)
÷
3
n
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
−
18
g
3
−
4
g
2
+
18
g
)
÷
2
g
(-18g^3 - 4g^2 + 18g) \div 2g
(
−
18
g
3
−
4
g
2
+
18
g
)
÷
2
g
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
5
j
3
+
5
j
2
+
20
j
)
÷
5
j
(5j^3 + 5j^2 + 20j) \div 5j
(
5
j
3
+
5
j
2
+
20
j
)
÷
5
j
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
8
p
2
−
24
p
)
÷
4
p
(8p^2 - 24p) \div 4p
(
8
p
2
−
24
p
)
÷
4
p
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
2
j
3
+
8
j
2
−
42
j
)
÷
(
j
+
7
)
(2j^3 + 8j^2 - 42j) \div (j + 7)
(
2
j
3
+
8
j
2
−
42
j
)
÷
(
j
+
7
)
\newline
______
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
4
z
2
+
9
z
−
9
)
÷
(
z
+
3
)
(4z^2 + 9z - 9) \div (z + 3)
(
4
z
2
+
9
z
−
9
)
÷
(
z
+
3
)
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
3
c
3
−
6
c
2
−
9
c
)
÷
(
c
−
3
)
(3c^3 - 6c^2 - 9c) \div (c - 3)
(
3
c
3
−
6
c
2
−
9
c
)
÷
(
c
−
3
)
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
h
3
−
3
h
2
−
10
h
)
÷
(
h
+
2
)
(h^3 - 3h^2 - 10h) \div (h + 2)
(
h
3
−
3
h
2
−
10
h
)
÷
(
h
+
2
)
\newline
______
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
4
z
3
+
10
z
2
−
24
z
)
÷
(
z
+
4
)
(4z^3 + 10z^2 - 24z) \div (z + 4)
(
4
z
3
+
10
z
2
−
24
z
)
÷
(
z
+
4
)
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
5
m
3
−
36
m
2
−
81
m
)
÷
(
m
−
9
)
(5m^3 - 36m^2 - 81m) \div (m - 9)
(
5
m
3
−
36
m
2
−
81
m
)
÷
(
m
−
9
)
\newline
______
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
4
w
3
+
13
w
2
+
3
w
)
÷
(
w
+
3
)
(4w^3 + 13w^2 + 3w) \div (w + 3)
(
4
w
3
+
13
w
2
+
3
w
)
÷
(
w
+
3
)
\newline
______
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
5
t
3
+
16
t
2
−
16
t
)
÷
(
t
+
4
)
(5t^3 + 16t^2 - 16t) \div (t + 4)
(
5
t
3
+
16
t
2
−
16
t
)
÷
(
t
+
4
)
\newline
______
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
2
c
2
+
5
c
−
7
)
÷
(
c
−
1
)
(2c^2 + 5c - 7) \div (c - 1)
(
2
c
2
+
5
c
−
7
)
÷
(
c
−
1
)
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
3
s
3
+
26
s
2
+
48
s
)
÷
(
s
+
6
)
(3s^3 + 26s^2 + 48s) \div (s + 6)
(
3
s
3
+
26
s
2
+
48
s
)
÷
(
s
+
6
)
\newline
______
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
4
n
3
+
22
n
2
−
12
n
)
÷
(
n
+
6
)
(4n^3 + 22n^2 - 12n) \div (n + 6)
(
4
n
3
+
22
n
2
−
12
n
)
÷
(
n
+
6
)
\newline
______
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
y
3
+
7
y
2
+
10
y
)
÷
(
y
+
5
)
(y^3 + 7y^2 + 10y) \div (y + 5)
(
y
3
+
7
y
2
+
10
y
)
÷
(
y
+
5
)
\newline
______
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
5
b
2
+
3
b
−
2
)
÷
(
b
+
1
)
(5b^2 + 3b - 2) \div (b + 1)
(
5
b
2
+
3
b
−
2
)
÷
(
b
+
1
)
\newline
______
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
3
x
3
+
11
x
2
+
10
x
)
÷
(
x
+
2
)
(3x^3 + 11x^2 + 10x) \div (x + 2)
(
3
x
3
+
11
x
2
+
10
x
)
÷
(
x
+
2
)
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
2
x
2
−
2
x
−
4
)
÷
(
x
−
2
)
(2x^2 - 2x - 4) \div (x - 2)
(
2
x
2
−
2
x
−
4
)
÷
(
x
−
2
)
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
k
3
+
4
k
2
−
5
k
)
÷
(
k
−
1
)
(k^3 + 4k^2 - 5k) \div (k - 1)
(
k
3
+
4
k
2
−
5
k
)
÷
(
k
−
1
)
\newline
______
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
6
g
3
−
20
g
2
+
6
g
)
÷
(
g
−
3
)
(6g^3 - 20g^2 + 6g) \div (g - 3)
(
6
g
3
−
20
g
2
+
6
g
)
÷
(
g
−
3
)
\newline
______
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
u
3
+
5
u
2
+
4
u
)
÷
(
u
+
1
)
(u^3 + 5u^2 + 4u) \div (u + 1)
(
u
3
+
5
u
2
+
4
u
)
÷
(
u
+
1
)
\newline
______
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
5
j
3
−
3
j
2
−
2
j
)
÷
(
j
−
1
)
(5j^3 - 3j^2 - 2j) \div (j - 1)
(
5
j
3
−
3
j
2
−
2
j
)
÷
(
j
−
1
)
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
u
2
−
5
u
−
6
)
÷
(
u
−
6
)
(u^2 - 5u - 6) \div (u - 6)
(
u
2
−
5
u
−
6
)
÷
(
u
−
6
)
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
6
y
2
+
48
y
+
42
)
÷
(
y
+
7
)
(6y^2 + 48y + 42) \div (y + 7)
(
6
y
2
+
48
y
+
42
)
÷
(
y
+
7
)
Get tutor help
Divide. If there is a remainder, include it as a simplified fraction.
(
28
h
8
+
8
h
7
+
20
h
6
+
8
h
4
)
÷
4
h
3
(28h^8+8h^7+20h^6+8h^4)\div 4h^3
(
28
h
8
+
8
h
7
+
20
h
6
+
8
h
4
)
÷
4
h
3
Get tutor help
1
2
Next