Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the definite integral: y=int_(0)^(2)2xe^(x)dx

Evaluate the definite integral: y=022xexdxy=\int_{0}^{2} 2xe^{x}\,dx

Full solution

Q. Evaluate the definite integral: y=022xexdxy=\int_{0}^{2} 2xe^{x}\,dx
  1. Apply integration by parts: Step 11: Apply integration by parts, where u=2xu = 2x and dv=exdxdv = e^x dx.\newline- Choose u=2xu = 2x, then du=2dxdu = 2 dx.\newline- Choose dv=exdxdv = e^x dx, then v=exv = e^x.
  2. Use integration by parts formula: Step 22: Use the integration by parts formula: udv=uvvdu\int u \, dv = uv - \int v \, du.
    - Substitute the values: 2xexdx=2xex2exdx\int 2x e^x \, dx = 2x \cdot e^x - \int 2 \cdot e^x \, dx.
  3. Integrate 2ex2 \cdot e^x: Step 33: Integrate 2exdx\int 2 \cdot e^x \, dx.\newline- The integral of exe^x is exe^x, so 2exdx=2ex\int 2 \cdot e^x \, dx = 2e^x.
  4. Substitute back into formula: Step 44: Substitute back into the integration by parts formula.\newline- 2xexdx=2xex2ex\int 2x e^x dx = 2x \cdot e^x - 2e^x.
  5. Evaluate definite integral: Step 55: Evaluate the definite integral from 00 to 22.
    - Plug in the limits: (22e22e2)(20e02e0)(2\cdot 2\cdot e^2 - 2\cdot e^2) - (2\cdot 0\cdot e^0 - 2\cdot e^0).
    - Simplify: (4e22e2)(02)(4e^2 - 2e^2) - (0 - 2).
  6. Final simplification: Step 66: Final simplification.\newline- Simplify the expression: 2e2+22e^2 + 2.\newline- Oops, I forgot to multiply the second term by exe^x in the integration by parts step.

More problems from Evaluate definite integrals using the chain rule