Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int-2x^(3)cos(3x)dx
Answer:

Evaluate the integral.\newline2x3cos(3x)dx \int-2 x^{3} \cos (3 x) d x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newline2x3cos(3x)dx \int-2 x^{3} \cos (3 x) d x \newlineAnswer:
  1. Identify Integral: Identify the integral that needs to be evaluated.\newlineWe need to evaluate the integral of the function 2x3cos(3x)-2x^3 \cos(3x) with respect to xx. This is an integration problem that requires the use of integration by parts, which is based on the formula udv=uvvdu\int u \, dv = uv - \int v \, du.
  2. Choose uu and dvdv: Choose uu and dvdv for integration by parts.\newlineLet u=2x3u = -2x^3, which means du=6x2dxdu = -6x^2 dx after differentiation.\newlineLet dv=cos(3x)dxdv = \cos(3x) dx, which means v=(1/3)sin(3x)v = (1/3)\sin(3x) after integration.
  3. Apply Integration by Parts: Apply the integration by parts formula.\newlineUsing the integration by parts formula, we have:\newline2x3cos(3x)dx=uvvdu\int -2x^3 \cos(3x) \, dx = uv - \int v \, du\newline= (2x3)(13)sin(3x)(13)sin(3x)(6x2dx)(-2x^3)(\frac{1}{3})\sin(3x) - \int (\frac{1}{3})\sin(3x)(-6x^2 \, dx)\newline= (-\frac{\(2\)}{\(3\)})x^\(3 \sin(33x) + 22 \int x^22 \sin(33x) \, dx)
  4. Apply Integration by Parts Again: Apply integration by parts again to the remaining integral.\newlineWe need to apply integration by parts again to the integral x2sin(3x)dx\int x^2 \sin(3x) \, dx.\newlineLet u=x2u = x^2, which means du=2xdxdu = 2x \, dx after differentiation.\newlineLet dv=sin(3x)dxdv = \sin(3x) \, dx, which means v=(1/3)cos(3x)v = -(1/3)\cos(3x) after integration.
  5. Apply Integration by Parts Formula: Apply the integration by parts formula to the new integral.\newlineUsing the integration by parts formula again, we have:\newlinex2sin(3x)dx=uvvdu\int x^2 \sin(3x) \, dx = uv - \int v \, du\newline=x2(13)cos(3x)(13)cos(3x)(2xdx)= x^2(-\frac{1}{3})\cos(3x) - \int(-\frac{1}{3})\cos(3x)(2x \, dx)\newline=(13)x2cos(3x)+(23)xcos(3x)dx= -(\frac{1}{3})x^2 \cos(3x) + (\frac{2}{3}) \int x \cos(3x) \, dx
  6. Apply Integration by Parts Again: Apply integration by parts one more time to the remaining integral.\newlineWe need to apply integration by parts one more time to the integral xcos(3x)dx\int x \cos(3x) \, dx.\newlineLet u=xu = x, which means du=dxdu = dx after differentiation.\newlineLet dv=cos(3x)dxdv = \cos(3x) \, dx, which means v=(13)sin(3x)v = (\frac{1}{3})\sin(3x) after integration.
  7. Apply Integration by Parts Formula: Apply the integration by parts formula to the final integral.\newlineUsing the integration by parts formula one more time, we have:\newlinexcos(3x)dx=uvvdu\int x \cos(3x) \, dx = uv - \int v \, du\newline= x(13)sin(3x)(13)sin(3x)dxx(\frac{1}{3})\sin(3x) - \int(\frac{1}{3})\sin(3x) \, dx\newline= (13)xsin(3x)(19)cos(3x)+C(\frac{1}{3})x \sin(3x) - (\frac{1}{9})\cos(3x) + C
  8. Combine for Final Answer: Combine all parts to get the final answer.\newlineNow we combine all parts to get the final answer for the original integral:\newline2x3cos(3x)dx=(23)x3sin(3x)+2[(13)x2cos(3x)+(23)((13)xsin(3x)(19)cos(3x))]+C\int -2x^3 \cos(3x) \, dx = \left(-\frac{2}{3}\right)x^3 \sin(3x) + 2\left[-\left(\frac{1}{3}\right)x^2 \cos(3x) + \left(\frac{2}{3}\right)\left(\left(\frac{1}{3}\right)x \sin(3x) - \left(\frac{1}{9}\right)\cos(3x)\right)\right] + C\newlineSimplify the expression:\newline=(23)x3sin(3x)(23)x2cos(3x)+(49)xsin(3x)(427)cos(3x)+C= \left(-\frac{2}{3}\right)x^3 \sin(3x) - \left(\frac{2}{3}\right)x^2 \cos(3x) + \left(\frac{4}{9}\right)x \sin(3x) - \left(\frac{4}{27}\right)\cos(3x) + C

More problems from Evaluate definite integrals using the chain rule