Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

x^(2)-3xy+y^(3)=3
Find the value of 
(dy)/(dx) at the point 
(1,2).
Choose 1 answer:
(A) 
(4)/(15)
(B) 
(4)/(9)
(C) 
(15)/(4)
() 
(9)/(4)

x23xy+y3=3 x^{2}-3 x y+y^{3}=3 \newlineFind the value of dydx \frac{d y}{d x} at the point (1,2) (1,2) .\newlineChoose 11 answer:\newline(A) 415 \frac{4}{15} \newline(B) 49 \frac{4}{9} \newline(C) 154 \frac{15}{4} \newline(D) 94 \frac{9}{4}

Full solution

Q. x23xy+y3=3 x^{2}-3 x y+y^{3}=3 \newlineFind the value of dydx \frac{d y}{d x} at the point (1,2) (1,2) .\newlineChoose 11 answer:\newline(A) 415 \frac{4}{15} \newline(B) 49 \frac{4}{9} \newline(C) 154 \frac{15}{4} \newline(D) 94 \frac{9}{4}
  1. Differentiate Equation: Differentiate the given equation with respect to xx, using implicit differentiation.\newlineddx(x2)ddx(3xy)+ddx(y3)=ddx(3)\frac{d}{dx}(x^2) - \frac{d}{dx}(3xy) + \frac{d}{dx}(y^3) = \frac{d}{dx}(3)
  2. Apply Product Rule: Differentiate each term separately.\newline2x3ddx(xy)+3y2dydx=02x - 3\frac{d}{dx}(xy) + 3y^2\frac{dy}{dx} = 0
  3. Substitute Values: Apply the product rule to ddx(xy)\frac{d}{dx}(xy).2x3(xdydx+y)+3y2dydx=02x - 3(x\frac{dy}{dx} + y) + 3y^2\frac{dy}{dx} = 0
  4. Simplify Equation: Substitute x=1x=1 and y=2y=2 into the differentiated equation.2(1)3((1)dydx+2)+3(2)2dydx=02(1) - 3((1)\frac{dy}{dx} + 2) + 3(2)^2\frac{dy}{dx} = 0
  5. Combine Like Terms: Simplify the equation.\newline23dydx6+12dydx=02 - 3\frac{dy}{dx} - 6 + 12\frac{dy}{dx} = 0
  6. Solve for dydx\frac{dy}{dx}: Combine like terms.9(dydx)4=09\left(\frac{dy}{dx}\right) - 4 = 0
  7. Solve for dydx\frac{dy}{dx}: Combine like terms.9(dydx)4=09\left(\frac{dy}{dx}\right) - 4 = 0 Solve for dydx\frac{dy}{dx}.dydx=49\frac{dy}{dx} = \frac{4}{9}

More problems from Operations with rational exponents