Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the area of the region bound by the graphs of 
f(x)=sqrt(x-2),g(x)=14-x , and 
x=2 ?
Choose 1 answer:
(A) 
(99)/(2)
(B) 
(19)/(6)
(C) 
(151)/(2)
(D) 
(45)/(2)

What is the area of the region bound by the graphs of f(x)=x2,g(x)=14x f(x)=\sqrt{x-2}, g(x)=14-x , and x=2 x=2 ?\newlineChoose 11 answer:\newline(A) 992 \frac{99}{2} \newline(B) 196 \frac{19}{6} \newline(C) 1512 \frac{151}{2} \newline(D) 452 \frac{45}{2}

Full solution

Q. What is the area of the region bound by the graphs of f(x)=x2,g(x)=14x f(x)=\sqrt{x-2}, g(x)=14-x , and x=2 x=2 ?\newlineChoose 11 answer:\newline(A) 992 \frac{99}{2} \newline(B) 196 \frac{19}{6} \newline(C) 1512 \frac{151}{2} \newline(D) 452 \frac{45}{2}
  1. Set up integral limits: To find the area of the region, we need to set up an integral with the appropriate limits of integration. The region is bounded by the graphs of f(x)f(x) and g(x)g(x), and the vertical line x=2x=2. We need to find the points of intersection between f(x)f(x) and g(x)g(x) to determine the limits.
  2. Find points of intersection: Set f(x)f(x) equal to g(x)g(x) to find the points of intersection: x2=14x\sqrt{x-2} = 14-x. Square both sides to eliminate the square root: (x2)2=(14x)2(\sqrt{x-2})^2 = (14-x)^2.
  3. Simplify and rearrange equation: Simplify the equation: x2=(14x)2x-2 = (14-x)^2. Expand the right side: x2=19628x+x2x-2 = 196 - 28x + x^2.
  4. Factor quadratic equation: Rearrange the equation to form a quadratic equation: x229x+198=0x^2 - 29x + 198 = 0.
  5. Calculate area using integrals: Factor the quadratic equation: (x18)(x11)=0(x-18)(x-11) = 0. This gives us the points of intersection x=18x=18 and x=11x=11.
  6. Integrate from x=2x=2 to x=11x=11: The area of the region can be found by integrating the difference between g(x)g(x) and f(x)f(x) from x=2x=2 to x=11x=11, and then from x=11x=11 to x=18x=18. The integral is split because f(x)f(x) is only defined for x2x \geq 2.
  7. Evaluate integral at bounds: Set up the integral for the first part from x=2x=2 to x=11x=11: 211(14xx2)dx\int_{2}^{11} (14-x - \sqrt{x-2}) \, dx.
  8. Integrate from x=11x=11 to x=18x=18: Calculate the integral: 211(14x)dx211x2dx\int_{2}^{11} (14-x) \,dx - \int_{2}^{11} \sqrt{x-2} \,dx.
  9. Evaluate integral at bounds: Integrate the first part: 211(14x)dx=[14xx22]\int_{2}^{11} (14-x) \, dx = [14x - \frac{x^2}{2}] from 22 to 1111.
  10. Evaluate integral at bounds: Integrate the first part: 211(14x)dx=[14xx22]\int_{2}^{11} (14-x) \, dx = [14x - \frac{x^2}{2}] from 22 to 1111.Evaluate the first part at the bounds: [14(11)(11)22][14(2)(2)22]=[15460.5][282]=93.526=67.5[14(11) - \frac{(11)^2}{2}] - [14(2) - \frac{(2)^2}{2}] = [154 - 60.5] - [28 - 2] = 93.5 - 26 = 67.5.
  11. Evaluate integral at bounds: Integrate the first part: 211(14x)dx=[14xx22]\int_{2}^{11} (14-x) \, dx = [14x - \frac{x^2}{2}] from 22 to 1111.Evaluate the first part at the bounds: [14(11)(11)22][14(2)(2)22]=[15460.5][282]=93.526=67.5[14(11) - \frac{(11)^2}{2}] - [14(2) - \frac{(2)^2}{2}] = [154 - 60.5] - [28 - 2] = 93.5 - 26 = 67.5.Integrate the second part: 211x2dx\int_{2}^{11} \sqrt{x-2} \, dx. Let u=x2u = x-2, then du=dxdu = dx and when x=2x=2, u=0u=0 and when x=11x=11, 2200. The integral becomes 2211.
  12. Evaluate integral at bounds: Integrate the first part: 211(14x)dx=[14xx22]\int_{2}^{11} (14-x) \, dx = [14x - \frac{x^2}{2}] from 22 to 1111.Evaluate the first part at the bounds: [14(11)(11)22][14(2)(2)22]=[15460.5][282]=93.526=67.5[14(11) - \frac{(11)^2}{2}] - [14(2) - \frac{(2)^2}{2}] = [154 - 60.5] - [28 - 2] = 93.5 - 26 = 67.5.Integrate the second part: 211x2dx\int_{2}^{11} \sqrt{x-2} \, dx. Let u=x2u = x-2, then du=dxdu = dx and when x=2x=2, u=0u=0 and when x=11x=11, 2200. The integral becomes 2211.Calculate the integral: 2222 from 2233 to 2244.
  13. Evaluate integral at bounds: Integrate the first part: 211(14x)dx=[14xx22]\int_{2}^{11} (14-x) \, dx = [14x - \frac{x^2}{2}] from 22 to 1111.Evaluate the first part at the bounds: [14(11)(11)22][14(2)(2)22]=[15460.5][282]=93.526=67.5[14(11) - \frac{(11)^2}{2}] - [14(2) - \frac{(2)^2}{2}] = [154 - 60.5] - [28 - 2] = 93.5 - 26 = 67.5.Integrate the second part: 211x2dx\int_{2}^{11} \sqrt{x-2} \, dx. Let u=x2u = x-2, then du=dxdu = dx and when x=2x=2, u=0u=0 and when x=11x=11, 2200. The integral becomes 2211.Calculate the integral: 2222 from 2233 to 2244.Evaluate the second part at the bounds: 2255.
  14. Evaluate integral at bounds: Integrate the first part: 211(14x)dx=[14xx22]\int_{2}^{11} (14-x) \, dx = [14x - \frac{x^2}{2}] from 22 to 1111.Evaluate the first part at the bounds: [14(11)(11)22][14(2)(2)22]=[15460.5][282]=93.526=67.5[14(11) - \frac{(11)^2}{2}] - [14(2) - \frac{(2)^2}{2}] = [154 - 60.5] - [28 - 2] = 93.5 - 26 = 67.5.Integrate the second part: 211x2dx\int_{2}^{11} \sqrt{x-2} \, dx. Let u=x2u = x-2, then du=dxdu = dx and when x=2x=2, u=0u=0 and when x=11x=11, 2200. The integral becomes 2211.Calculate the integral: 2222 from 2233 to 2244.Evaluate the second part at the bounds: 2255.Subtract the second part from the first part to get the area from x=2x=2 to x=11x=11: 2288.
  15. Evaluate integral at bounds: Integrate the first part: 211(14x)dx=[14xx22]\int_{2}^{11} (14-x) \, dx = [14x - \frac{x^2}{2}] from 22 to 1111.Evaluate the first part at the bounds: [14(11)(11)22][14(2)(2)22]=[15460.5][282]=93.526=67.5[14(11) - \frac{(11)^2}{2}] - [14(2) - \frac{(2)^2}{2}] = [154 - 60.5] - [28 - 2] = 93.5 - 26 = 67.5.Integrate the second part: 211x2dx\int_{2}^{11} \sqrt{x-2} \, dx. Let u=x2u = x-2, then du=dxdu = dx and when x=2x=2, u=0u=0 and when x=11x=11, 2200. The integral becomes 2211.Calculate the integral: 2222 from 2233 to 2244.Evaluate the second part at the bounds: 2255.Subtract the second part from the first part to get the area from x=2x=2 to x=11x=11: 2288.Now, set up the integral for the second part from x=11x=11 to 111100: 111111.
  16. Evaluate integral at bounds: Integrate the first part: 211(14x)dx=[14xx22]\int_{2}^{11} (14-x) \, dx = [14x - \frac{x^2}{2}] from 22 to 1111. Evaluate the first part at the bounds: [14(11)(11)22][14(2)(2)22]=[15460.5][282]=93.526=67.5[14(11) - \frac{(11)^2}{2}] - [14(2) - \frac{(2)^2}{2}] = [154 - 60.5] - [28 - 2] = 93.5 - 26 = 67.5. Integrate the second part: 211x2dx\int_{2}^{11} \sqrt{x-2} \, dx. Let u=x2u = x-2, then du=dxdu = dx and when x=2x=2, u=0u=0 and when x=11x=11, 2200. The integral becomes 2211. Calculate the integral: 2222 from 2233 to 2244. Evaluate the second part at the bounds: 2255. Subtract the second part from the first part to get the area from x=2x=2 to x=11x=11: 2288. Now, set up the integral for the second part from x=11x=11 to 111100: 111111. Calculate the integral: 111122 from 1111 to 111144.
  17. Evaluate integral at bounds: Integrate the first part: 211(14x)dx=[14xx22]\int_{2}^{11} (14-x) \, dx = [14x - \frac{x^2}{2}] from 22 to 1111.Evaluate the first part at the bounds: [14(11)(11)22][14(2)(2)22]=[15460.5][282]=93.526=67.5[14(11) - \frac{(11)^2}{2}] - [14(2) - \frac{(2)^2}{2}] = [154 - 60.5] - [28 - 2] = 93.5 - 26 = 67.5.Integrate the second part: 211x2dx\int_{2}^{11} \sqrt{x-2} \, dx. Let u=x2u = x-2, then du=dxdu = dx and when x=2x=2, u=0u=0 and when x=11x=11, 2200. The integral becomes 2211.Calculate the integral: 2222 from 2233 to 2244.Evaluate the second part at the bounds: 2255.Subtract the second part from the first part to get the area from x=2x=2 to x=11x=11: 2288.Now, set up the integral for the second part from x=11x=11 to 111100: 111111.Calculate the integral: 111122 from 1111 to 111144.Evaluate the integral at the bounds: 111155.

More problems from Operations with rational exponents