Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Which sign makes the statement true?
\newline
2
5
\frac{2}{5}
5
2
?
\text{?}
?
4
5
\frac{4}{5}
5
4
\newline
Choices:
\newline
(A) >
\newline
(B) <
\newline
(C)
=
=
=
View step-by-step help
Home
Math Problems
Calculus
Intermediate Value Theorem
Full solution
Q.
Which sign makes the statement true?
\newline
2
5
\frac{2}{5}
5
2
?
\text{?}
?
4
5
\frac{4}{5}
5
4
\newline
Choices:
\newline
(A)
>
>
>
\newline
(B)
<
<
<
\newline
(C)
=
=
=
Compare fractions:
Compare the
fractions
2
5
\frac{2}{5}
5
2
and
4
5
\frac{4}{5}
5
4
to determine which is larger; since the denominators are the same, compare the numerators directly.
More problems from Intermediate Value Theorem
Question
Which of the following functions are continuous for all real numbers?
\newline
g
(
x
)
=
ln
(
x
)
g(x)=\ln (x)
g
(
x
)
=
ln
(
x
)
\newline
f
(
x
)
=
1
x
f(x)=\frac{1}{x}
f
(
x
)
=
x
1
\newline
Choose
1
1
1
answer:
\newline
A)
g
g
g
only
\newline
(B)
f
f
f
only
\newline
(C) Both
g
g
g
and
f
f
f
\newline
D Neither
g
g
g
nor
f
f
f
Get tutor help
Posted 9 months ago
Question
Let
\newline
f
(
x
)
=
{
ln
(
−
x
)
+
3
for
x
<
−
3
ln
(
−
x
+
3
)
for
−
3
≤
x
<
3
f(x)=\left\{\begin{array}{ll} \ln (-x)+3 & \text { for } x<-3 \\ \ln (-x+3) & \text { for }-3 \leq x<3 \end{array}\right.
f
(
x
)
=
{
ln
(
−
x
)
+
3
ln
(
−
x
+
3
)
for
x
<
−
3
for
−
3
≤
x
<
3
\newline
Is
f
f
f
continuous at
x
=
−
3
x=-3
x
=
−
3
?
\newline
Choose
1
1
1
answer:
\newline
(A) Yes
\newline
(B)
N
o
\mathrm{No}
No
Get tutor help
Posted 9 months ago
Question
Let
\newline
f
(
x
)
=
{
ln
(
x
)
for
0
<
x
≤
2
x
2
ln
(
2
)
for
x
>
2
f(x)=\left\{\begin{array}{ll}\ln (x) & \text { for } 0<x \leq 2 \\ x^{2} \ln (2) & \text { for } x>2\end{array}\right.
f
(
x
)
=
{
ln
(
x
)
x
2
ln
(
2
)
for
0
<
x
≤
2
for
x
>
2
\newline
Is
f
f
f
continuous at
x
=
2
x=2
x
=
2
?
\newline
Choose
1
1
1
answer:
\newline
(A) Yes
\newline
(B)
N
o
\mathrm{No}
No
Get tutor help
Posted 4 months ago
Question
Let
\newline
g
(
x
)
=
{
1
cos
(
x
)
for
−
π
2
<
x
<
0
cos
(
x
+
π
)
for
x
≥
0
g(x)=\left\{\begin{array}{ll} \frac{1}{\cos (x)} & \text { for }-\frac{\pi}{2}<x<0 \\ \cos (x+\pi) & \text { for } x \geq 0 \end{array}\right.
g
(
x
)
=
{
c
o
s
(
x
)
1
cos
(
x
+
π
)
for
−
2
π
<
x
<
0
for
x
≥
0
\newline
Is
g
g
g
continuous at
x
=
0
x=0
x
=
0
?
\newline
Choose
1
1
1
answer:
\newline
(A) Yes
\newline
(B) No
Get tutor help
Posted 9 months ago
Question
Let
\newline
h
(
x
)
=
{
2
x
−
1
for
x
<
1
2
1
−
x
for
x
≥
1
h(x)=\left\{\begin{array}{ll} 2^{x-1} & \text { for } x<1 \\ 2^{1-x} & \text { for } x \geq 1 \end{array}\right.
h
(
x
)
=
{
2
x
−
1
2
1
−
x
for
x
<
1
for
x
≥
1
\newline
Is
h
h
h
continuous at
x
=
1
x=1
x
=
1
?
\newline
Choose
1
1
1
answer:
\newline
(A) Yes
\newline
(B) No
Get tutor help
Posted 9 months ago
Question
Let
\newline
g
(
x
)
=
{
(
x
−
2
)
2
for
x
≤
2
2
−
x
2
for
x
>
2
g(x)=\left\{\begin{array}{ll} (x-2)^{2} & \text { for } x \leq 2 \\ 2-x^{2} & \text { for } x>2 \end{array}\right.
g
(
x
)
=
{
(
x
−
2
)
2
2
−
x
2
for
x
≤
2
for
x
>
2
\newline
Is
g
g
g
continuous at
x
=
2
x=2
x
=
2
?
\newline
Choose
1
1
1
answer:
\newline
(A) Yes
\newline
(B)
N
o
\mathrm{No}
No
Get tutor help
Posted 9 months ago
Question
Let
\newline
g
(
x
)
=
{
e
x
for
x
≤
−
1
−
e
−
x
for
x
>
−
1
g(x)=\left\{\begin{array}{ll} e^{x} & \text { for } x \leq-1 \\ -e^{-x} & \text { for } x>-1 \end{array}\right.
g
(
x
)
=
{
e
x
−
e
−
x
for
x
≤
−
1
for
x
>
−
1
\newline
Is
g
g
g
continuous at
x
=
−
1
x=-1
x
=
−
1
?
\newline
Choose
1
1
1
answer:
\newline
(A) Yes
\newline
(B) No
Get tutor help
Posted 9 months ago
Question
Let
\newline
h
(
x
)
=
{
e
2
x
for
x
<
0
e
5
x
for
x
≥
0
h(x)=\left\{\begin{array}{ll} e^{2 x} & \text { for } x<0 \\ e^{5 x} & \text { for } x \geq 0 \end{array}\right.
h
(
x
)
=
{
e
2
x
e
5
x
for
x
<
0
for
x
≥
0
\newline
Is
h
h
h
continuous at
x
=
0
x=0
x
=
0
?
\newline
Choose
1
1
1
answer:
\newline
(A) Yes
\newline
(B) No
Get tutor help
Posted 9 months ago
Question
Let
\newline
h
(
x
)
=
{
6
x
+
5
for
−
5
<
x
<
−
3
x
2
−
6
for
x
≥
−
3
h(x)=\left\{\begin{array}{cl}\frac{6}{x+5} & \text { for }-5<x<-3 \\ x^{2}-6 & \text { for } x \geq-3\end{array}\right.
h
(
x
)
=
{
x
+
5
6
x
2
−
6
for
−
5
<
x
<
−
3
for
x
≥
−
3
\newline
Is
h
h
h
continuous at
x
=
−
3
x=-3
x
=
−
3
?
\newline
Choose
1
1
1
answer:
\newline
(A) Yes
\newline
(B) No
Get tutor help
Posted 9 months ago
Question
Let
\newline
g
(
x
)
=
{
sin
(
x
)
for
x
<
0
x
2
for
x
≥
0
g(x)=\left\{\begin{array}{ll}\sin (x) & \text { for } x<0 \\ x^{2} & \text { for } x \geq 0\end{array}\right.
g
(
x
)
=
{
sin
(
x
)
x
2
for
x
<
0
for
x
≥
0
\newline
Is
g
g
g
continuous at
x
=
0
x=0
x
=
0
?
\newline
Choose
1
1
1
answer:
\newline
(A) Yes
\newline
(B) No
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant