Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let

g(x)={[e^(x)," for "x <= -1],[-e^(-x)," for "x > -1]:}
Is 
g continuous at 
x=-1 ?
Choose 1 answer:
(A) Yes
(B) No

Let\newlineg(x)={examp; for x1examp; for xgt;1 g(x)=\left\{\begin{array}{ll} e^{x} &amp; \text { for } x \leq-1 \\ -e^{-x} &amp; \text { for } x&gt;-1 \end{array}\right. \newlineIs g g continuous at x=1 x=-1 ?\newlineChoose 11 answer:\newline(A) Yes\newline(B) No

Full solution

Q. Let\newlineg(x)={ex for x1ex for x>1 g(x)=\left\{\begin{array}{ll} e^{x} & \text { for } x \leq-1 \\ -e^{-x} & \text { for } x>-1 \end{array}\right. \newlineIs g g continuous at x=1 x=-1 ?\newlineChoose 11 answer:\newline(A) Yes\newline(B) No
  1. Check Left-Hand Limit: To determine if g(x)g(x) is continuous at x=1x=-1, we need to check if the left-hand limit, the right-hand limit, and the value of the function at x=1x=-1 are all equal.
  2. Find Right-Hand Limit: First, let's find the left-hand limit as xx approaches 1-1 from the left. Since for x1x \leq -1, g(x)=exg(x) = e^{x}, the left-hand limit is e1e^{-1}.
  3. Calculate Function Value: Now, let's find the right-hand limit as xx approaches 1-1 from the right. For x > -1, g(x)=exg(x) = -e^{-x}, so the right-hand limit is e(1)-e^{-(-1)} which simplifies to e1-e^{1}.
  4. Compare Limits and Value: Next, we need to find the value of the function at x=1x=-1. Since x=1x=-1 falls in the first case of the piecewise function where x1x \leq -1, g(1)=e1g(-1) = e^{-1}.
  5. Conclusion: Now we compare the left-hand limit, right-hand limit, and the value of the function at x=1x=-1. The left-hand limit is e1e^{-1}, the right-hand limit is e1-e^{1}, and the value of the function at x=1x=-1 is e1e^{-1}.
  6. Conclusion: Now we compare the left-hand limit, right-hand limit, and the value of the function at x=1x=-1. The left-hand limit is e1e^{-1}, the right-hand limit is e1-e^{1}, and the value of the function at x=1x=-1 is e1e^{-1}.Since the left-hand limit e1e^{-1} is not equal to the right-hand limit e1-e^{1}, the function g(x)g(x) is not continuous at x=1x=-1.

More problems from Intermediate Value Theorem