Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let

f(x)={[ln(x)," for "0 < x <= 2],[x^(2)ln(2)," for "x > 2]:}
Is 
f continuous at 
x=2 ?
Choose 1 answer:
(A) Yes
(B) 
No

Let\newlinef(x)={ln(x)amp; for 0<x2=""=""=""x2=""ln=""(2)=""=""=""=""for=""=""x="">2 f(x)=\left\{\begin{array}{ll}\ln (x) &amp; \text { for } 0<x 2="" \leq="" \\="" x^{2}="" \ln="" (2)="" &="" \text="" {="" for="" }="" x="">2\end{array}\right. \newlineIs f f continuous at x=2 x=2 ?\newlineChoose 11 answer:\newline(A) Yes\newline(B) No \mathrm{No}

Full solution

Q. Let\newlinef(x)={ln(x) for 0<x2x2ln(2) for x>2 f(x)=\left\{\begin{array}{ll}\ln (x) & \text { for } 0<x \leq 2 \\ x^{2} \ln (2) & \text { for } x>2\end{array}\right. \newlineIs f f continuous at x=2 x=2 ?\newlineChoose 11 answer:\newline(A) Yes\newline(B) No \mathrm{No}
  1. Check Conditions: To determine if the function f(x)f(x) is continuous at x=2x=2, we need to check if the following three conditions are met:\newline11. f(2)f(2) is defined.\newline22. The limit of f(x)f(x) as xx approaches 22 from the left (limx2f(x)\lim_{x\to 2^-} f(x)) exists.\newline33. The limit of f(x)f(x) as xx approaches 22 from the right (x=2x=200) exists and is equal to the limit from the left and to f(2)f(2).\newlineFirst, we will find f(2)f(2) using the definition of the function for x=2x=233.
  2. Find f(2)f(2): Substitute x=2x = 2 into the first part of the function definition to find f(2)f(2).\newlinef(2)=ln(2)f(2) = \ln(2).\newlineThis value is defined, so the first condition for continuity is met.
  3. Left Limit: Next, we need to find the limit of f(x)f(x) as xx approaches 22 from the left.\newlineSince the function for 0 < x \leq 2 is ln(x)\ln(x), the limit as xx approaches 22 from the left is simply the value of the function at x=2x=2.\newlinelimx2f(x)=ln(2)\lim_{x\to 2^-} f(x) = \ln(2).
  4. Right Limit: Now, we need to find the limit of f(x)f(x) as xx approaches 22 from the right.\newlineFor x > 2, the function is defined as x2ln(2)x^2 \cdot \ln(2). We need to evaluate this limit as xx approaches 22.\newlinelimx2+f(x)=(22)ln(2)=4ln(2)\lim_{x\to 2^+} f(x) = (2^2) \cdot \ln(2) = 4 \cdot \ln(2).
  5. Comparison: We compare the limits from the left and the right and the value of the function at x=2x=2.\newlineSince limx2f(x)=ln(2)\lim_{x\to 2^-} f(x) = \ln(2) and limx2+f(x)=4×ln(2)\lim_{x\to 2^+} f(x) = 4 \times \ln(2), the limits are not equal.\newlineTherefore, the function is not continuous at x=2x=2 because the limit from the right does not equal the limit from the left nor the value of the function at x=2x=2.

More problems from Intermediate Value Theorem